GG 612 February 28, 2008 1

ROCK STRUCTURE ("FRACTURES AND FOLDS") (2)

| Main Topics

A Planar geologic structures (mostly fractures)

B Folds

C Fabrics: grain-scale structure

II__Planar geologic structures (mostly fractures)

A Fractures/classification: structural discontinuities (all rock types).

» A fracture is classified according its kinematics (i.e., by the relative
displacement of points that were originally neighbors on opposing faces
of a fracture) and not by genesis or geometry.

» Fractures commonly occur in parallel sets and thus impart anisotropy
(directional variability) to rocks.

* Exceedingly important in crustal mechanics and fluid flow
1 Joints and dikes: opening mode fractures
2 Faults and fault zones: shearing mode fractures

a Geologic classification of faults
* Based on orientation of slip vector (vector joining offset
neighboring points) relative to the strike and dip of a fault
b Strike-slip fault: slip vector is predominantly horizontal (i.e.,
parallel or anti-parallel to the line of strike)
1 Right lateral: in map view across a fault, a marker is offset to the
right
2 Left lateral: in map view across a fault, a marker is offset to the
right
c Dip-slip fault: slip vector is parallel (or anti-parallel) to dip
1 Normal fault: hanging wall ("upper face" moves down relative
to footwall ("lower face")
2 Thrust fault: hanging wall moves up relative to footwall
D Oblique-slip: combination of strike slip and dip slip

B Fractures/Geometry
1 Thin relative to their in-plane dimensions (~1:1000+)

2 Bounded in extent
3 Grossly planar (usually)
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FOUR PLANAR GEOLOGIC STRUCTURES Fig. 2.1
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For joints and dikes (opening mode fractures) the relative displacement of originally
neighboring points on opposing walls is perpendicular to the fracture

For shear zones and faults, the relative displacement of neighboring
points is parallel to the feature

Deformation (displacement) is discontinuous across a fault

Deformation (displacement) is continuous across a shear zone
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Geologic Classification Fig. 2.2
of Faults

Strike-slip Faults
Left lateral Right lateral

Folded unit,
with sharp hinge

Dip-slip Faults

Pure normal slip Pure reverse (thrust) slip

Folded unit,
with sharp hinge
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Contrast between slip and separation Fig. 2.3

Pure dip slip.
Slicklenlines plunge
directly down-dip.

Piercing

After slip,

Before erosion Folded unit, with sharp hinge

Apparent right-lateral
offset (right-lateral
separation)

Apparent left-lateral
offset (left-lateral
separation)

After slip,
After erosion,
After driveway removal,

After new home construction
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C Shear zones
1 Thin structures across which deformation is continuous but where the
rate of displacement parallel to the structure changes rapidly with
respect to distance perpendicular to the structure
2 Rock within shear zones commonly is foliated
3 Shear zones common in plutonic & metamorphic rocks
D Bedding planes (sedimentary rocks & volcanic rocks)
1 Sedimentological discontinuities
2 Some individual bedding planes extend for tens of km
3 Bedding planes, like joints, can slip and become faults
Il_Folds
A Surfaces which have experienced, at least locally, a change in their
curvature (rate at which a unit tangent or a unit normal to a surface
changes with respect to distance along a surface
B Most readily identified in rocks that are layered or bound by parallel
discontinuities; folds occur in all rocks, including plutonic rocks!
Folding commonly causes bedding planes to slip
D Historical 2-D conceptualization of folds (see p. 6-10)
1 Fold classification factors
a Relative curvature of inner and outer surfaces of a fold
b Direction of opening of a fold (i.e., direction of curvature vector)
c Auxial surface orientation (axial surface connects points of tightest
curvature)
d Fold axis orientation (fold can be "generated" by fold axis)
1 Common types of folds
a Anticlines
i Oldest rocks in center of fold
i Usually "A-shaped" (i.e., they open down)
b Synclines
i Youngest rocks in center of fold
i Usually "U-shaped" (i.e., they open down)
E Emerging 3-D conceptualization of folds (see p. 11-14)
IV_Fabrics: grain-scale structure (metamorphic rocks & igneous rocks)
A Foliation: preferred alignment of minerals (e.g., mica) parallel to a plane;
B Lineation: preferred alignment of minerals parallel to a line;

O
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NOMENCLATURE FOR FOLDS Fig. 2.4

Positive curvature = concave up

Negative curvature = concave down
Limb

Inflection point;

/L/ curvature = 0.

Radius of curvature is small(est) at the hinge, larg(est) on the limbs

Symmetrical Folds

Wavelength

/ /// A}

Asymmetrical Folds
Enveloping surface Crest . Hinge

surface
surface

Axial
Axial

-

Enveloping surface

Enveloping surface Hinge ~ Trough
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A\ NOMENCLATURE FOR FOLDS Fig. 2.5

Anticline Young /_

Monocline

Old

Antiformal
1 _syncline

Young

Young

Old

Synformal
Anticline

)( Syncline: fold where rocks become younger towards axial surface
X Anticline: fold where rocks become older towards axial surface
Synform: fold where limbs dip towards axial surface
Antiform: fold where limbs dip way from axial surface

X Monocline: gentle anticline-syncline pair with horizontal outer limbs

Overturned folds

AN
e

>/ Overturned syncline: one limb of syncline is overturned

y Overturned anticline: one limb of anticline: is overturned



GG 612 February 28, 2008 8

Ramsay's Fold Classification Fig. 2.6

Dip Isogon: a line that connects points of equal dip on the top and bottom
of a folded layer

Class 1: Dip isogons converge towards axial surface;
Cinner > Couter

1A 1B 1C
Limbs thicker Layer thickness Limbs thinner
than hinges is constant than hinges
I (parallel folds) '
— Axial

surface '

—

“~ Dip
isogon

Class 2: Dip isogons parallel axial surface (similar folds);
Cinner = Couter

Inner and outer fold surfaces
have exactly the same shape

Translate outer fold surface
parallel to axial surface to match
inner fold surface

Class 3: Dip isogons diverge from axial surface;
Cinner < Couter

Class 3 conditions can't

extend "forever" otherwise

the inner and outer fold surfaces
would cross
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Terms for Describing the Tightness of Folds  Fig. 2.7
Interlimb angle Description of fold
180° - 120° Gentle
120° - 70° Open
70° - 30° Close
30° - 0° Tight
"o°" Isoclinal
Negative Mushroom
Gentle
120°
70°
Open
30° /\
Close Tight
Isoclinal

(limbs are parallel)
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Fold Classifications Fig. 2.8
(modified from Ragan, 1973, Figure 7.10)

Based on direction of fold concavity, axial suface orientation, and fold axis orientation

Fold opens horizontally
Vertical axial surface
Vertical fold axis

Reclined

Fold opens up or down
Vertical axial surface

Fold opens sideways

Inclined plunging Horizontal axial surface

Horizontal fold axis Horizontal fold axis
Upright horizontal Inclined horizontal Recumbent

First modifier (e.g., "upright") describes orientation of axial surface
Second modifier (e.g., "horizontal") describes orientation of fold axis
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Curvature at a point along a curved surface

A Local equation of a plane curve in_a tangential reference frame

Portion of At x=0,y = 0.

Local a plane curve
P At x=0,y =0.

tangent
reference
frame —

Express the plane curve as a power series of linearly independent terms:

1 y= [+ Cx7+ C_lx"] + [COxO] + I:Clx1 +C,x° + Cox’ + ] .

As y is finite at x= 0, all the coefficients for terms with negative exponents
must be zero. At x= 0, all the terms with positive exponents equal zero.
Accordingly, sincey = 0 at x = 0, C, = 0. So equation (1) simplifies:

2 y=Cx'+C,x’+Cyx’+ ...

The constraint y’ = 0 at x = O is satisfied at x =0 only if C, =0

3 y=Cx"+2C,x" +3C,x* +...=0.

4 y=C,x’+Cyx*+... Now examine the second derivative:
5 y"=2C,+6C,x'+.... Only the first term contributes as x — 0, hence
6 limy=C,x".

x—0

At x = 0, x is the direction of increasing distance along the curve, so
7 limK =[y(s)|=[y(x)| =2C,
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B | | . ‘ ‘ . ial ref ‘
' 3
Z Local tangent reference frame

- z=normal to surface
X,y axesin tangent plane

~ Plane curve: L
intersection of surface
~with yz plane f

- Plane curve:
intersection of surface
with xz plane

In this local reference frame, at (x= 0,y =0), z= 0, 9z/dx = 0, 9z/9y = O.

Plane curves locally all of second order pass through a point on a surface z =
f(x,y) and contain the surface normal, so any continuous surface is locally 2nd
order. The general form of such a surface in a tangential frame is

8 z=Ax"+Bxy+Cy’,

where at (x= 0, y = 0), z = 0, and the xy-plane is tangent to the surface. This

is the equation of a paraboloid:_near a point all surfaces are second-order
liotical o | boli boloid

Example: curve (normal section) in the arbitrary plane y = mx

9 lim z=Ax®+ Bx(mx)+ C(mx)2 = (A +Bm + sz)xz.

x—0,y—0

The curves of maximum and minimum curvature are orthogonal (Euler, 1760).
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Fold nomenclature and classification schemes
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A Emerging fold terminology and classification
1 Classification of Lisle and Toimil, 2007%*)

13

K < 0 (Anticlastic)
Principal curvatures have

opposite signs

K > O (Synclastic)
Principal curvatures have

same signs

H < 0 (N) antiform

Anticlastic antiform
k] > O, k2< O, |k2| > |k]|
“Saddle on a ridge”

Synclastic antiform
k;<0,k,<O

H > 0 (U) synform

Anticlastic synform
ki> 0, k, < O, Ik;| > Ikl

“Saddle in a valley”

Synclastic synform
k-| > O, kz >0

» * Lisle and Toimil (2007) consider convex curvatures as positive
Fold Classfication Scheme of Lisle and Toimil (2007)

Anticlastic antiform: k1 > 0, k2 < 0, [k2l > Ik1l

SRR

Synclastic antiform: k1 <0, k2 <0
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2 Classification of Mynatt et al., 2007

14

K < O (saddle) K=0 K > O (bowl or dome)
Principal curvatures Principal curvatures have
have opposite signs same signs

H < 0 (N) | Antiformal saddle Antiform Dome

Antiform [k;> 0, k<O, k.| > Ik;l | ki=0,k,<0 |ki<O0,k,<O
“Saddle on a ridge”

H=0 Perfect saddle Plane Not possible
ki> 0, ko< O, lkal = Ikl | k;=0,k,=0

H > 0 (U) | Synformal saddle Synform Basin

Synform | k;> 0, k, < 0, Ik, > Ikl k;>0,k,=0 [ky>0,k,>0

“Saddle in a valley”

* Mynatt et al., (2007) consider convex curvatures as positive
Fold Classfication Scheme of Mynat et al. (2007)

Antiformal saddle: k1> 0, k2 <0, k2| > k1l Antiform (cylindrical): k1 =0, k2 <0
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APPEARANCES OF PLANAR AND LINEAR FABRICS Fig. 2.9

(More than one view is commonly needed!)

Planar Fabric Linear Fabric
All elements parallel the fabric plane All elements parallel a common line
Elements do not parallel a common line  Elements do not parallel a common plane
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