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ROCK STRUCTURE ("FRACTURES AND FOLDS") (2)

I Main Topics
A Planar geologic structures (mostly fractures)
B Folds
C Fabrics: grain-scale structure

II    Planar geologic structures (mostly fractures)
A Fractures/classification: structural discontinuities (all rock types).
• A fracture is classified according its kinematics (i.e., by the relative

displacement of points that were originally neighbors on opposing faces
of a fracture) and not by genesis or geometry.

• Fractures commonly occur in parallel sets and thus impart anisotropy
(directional variability) to rocks.

• Exceedingly important in crustal mechanics and fluid flow
1 Joints and dikes: opening mode fractures
2 Faults and fault zones: shearing mode fractures

a Geologic classification of faults
• Based on orientation of slip vector (vector joining offset

neighboring points) relative to the strike and dip of a fault
b Strike-slip fault: slip vector is predominantly horizontal (i.e.,

parallel or anti-parallel to the line of strike)
1 Right lateral: in map view across a fault, a marker is offset to the

right
2 Left lateral: in map view across a fault, a marker is offset to the

right
c Dip-slip fault: slip vector is parallel (or anti-parallel) to dip

1 Normal fault: hanging wall ("upper face" moves down relative
to footwall ("lower face")

2 Thrust fault: hanging wall moves up relative to footwall
D Oblique-slip: combination of strike slip and dip slip

B Fractures/Geometry
1 Thin relative to their in-plane dimensions (~1:1000+)
2 Bounded in extent
3 Grossly planar (usually)
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C Shear zones
1 Thin structures across which deformation is continuous but where the

rate of displacement parallel to the structure changes rapidly with
respect to distance perpendicular to the structure

2 Rock within shear zones commonly is foliated
3 Shear zones common in plutonic & metamorphic rocks

D Bedding planes (sedimentary rocks & volcanic rocks)
1 Sedimentological discontinuities
2 Some individual bedding planes extend for tens of km
3 Bedding planes, like joints, can slip and become faults

III   Folds
A Surfaces which have experienced, at least locally, a change in their

curvature (rate at which a unit tangent or a unit normal to a surface
changes with respect to distance along a surface

B Most readily identified in rocks that are layered or bound by parallel
discontinuities; folds occur in all rocks, including plutonic rocks!

C Folding commonly causes bedding planes to slip
D Historical 2-D conceptualization of folds (see p. 6-10)

1 Fold classification factors
a Relative curvature of inner and outer surfaces of a fold
b Direction of opening of a fold (i.e., direction of curvature vector)
c Axial surface orientation (axial surface connects points of tightest

curvature)
d Fold axis orientation (fold can be "generated" by fold axis)

1 Common types of folds
a Anticlines

i Oldest rocks in center of fold
ii Usually "A-shaped" (i.e., they open down)

b Synclines
i Youngest rocks in center of fold
ii Usually "U-shaped" (i.e., they open down)

E Emerging 3-D conceptualization of folds (see p. 11-14)
IV  Fabrics: grain-scale structure (metamorphic rocks & igneous rocks)

A Foliation: preferred alignment of minerals (e.g., mica) parallel to a plane;
B Lineation: preferred alignment of minerals parallel to a line;
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Curvature at a point along a curved surface

A Local equation of a plane curve in a tangential reference frame

       

At x= 0, y = 0.

At x= 0, y’ = 0.

Express the plane curve as a power series of linearly independent terms:
1

€ 

y = ...+ C−2x
−2 + C−1x

−1[ ] + C0x
0[ ] + C1x

1 + C2x
2 + C3x

3 + ...[ ] .

As y is finite at x= 0, all the coefficients for terms with negative exponents

must be zero.  At x= 0, all the terms with positive exponents equal zero.

Accordingly, since y = 0 at x = 0, C0 = 0.  So equation (1) simplifies:
2

€ 

y = C1x
1 + C2x

2 + C3x
3 + ... .

The constraint y’ = 0 at x = 0 is satisfied at x = 0 only if C1 = 0
3

€ 

′ y = C1x
0 + 2C2x

1 + 3C3x
2 + ...= 0.

4

€ 

y = C2x
2 + C3x

3 + ... . Now examine the second derivative:

5

€ 

′ ′ y = 2C2 + 6C3x
1 + ... . Only the first term contributes as x → 0, hence

6

€ 

lim
x→0

y = C2x
2.

So near a point of tangency all plane curves are second-order (parabolic).

At x = 0, x is the direction of increasing distance along the curve, so
7

€ 

lim
x→0

K = y(s ′ ′ ) = y(x ′ ′ ) = 2C2
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B Local equation of a surface in a tangential reference frame

In this local reference frame, at (x= 0, y = 0), z = 0, ∂z/∂x = 0, ∂z/∂y = 0.

Plane curves locally all of second order pass through a point on a surface z =

f(x,y) and contain the surface normal, so any continuous surface is locally 2nd

order.  The general form of such a surface in a tangential frame is
8

€ 

z = Ax 2 + Bxy + Cy 2 ,

where at (x= 0, y = 0), z = 0, and the xy-plane is tangent to the surface.  This

is the equation of a paraboloid: near a point all surfaces are second-order

elliptical or hyperbolic paraboloids.

Example: curve (normal section) in the arbitrary plane y = mx
9

€ 

lim
x→0,y→0

z = Ax 2 + Bx mx( ) + C mx( )2 = A + Bm + Cm2( )x 2.
The curves of maximum and minimum curvature are orthogonal (Euler, 1760).
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Fold nomenclature and classification schemes
A Emerging fold terminology and classification

1 Classification of Lisle and Toimil, 2007*)

K < 0 (Anticlastic)
Principal curvatures have
opposite signs

K > 0 (Synclastic)
Principal curvatures have
same signs

H < 0 (∩) antiform Anticlastic antiform
k1 > 0, k2 < 0, |k2| > |k1|
“Saddle on a ridge”

Synclastic antiform
k1 < 0, k2 < 0

H > 0 (∪) synform Anticlastic synform
k1 > 0, k2 < 0, |k1| > |k2|
“Saddle in a valley”

Synclastic synform
k1 > 0, k2 > 0

• * Lisle and Toimil (2007) consider convex curvatures as positive
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2 Classification of Mynatt et al., 2007

K < 0 (saddle)
Principal curvatures
have opposite signs

K = 0 K > 0 (bowl or dome)
Principal curvatures have
same signs

H < 0 (∩)

Antiform

Antiformal saddle
k1 > 0, k2 < 0, |k2| > |k1|
“Saddle on a ridge”

Antiform
k1 = 0, k2 < 0

Dome
k1 < 0, k2 < 0

H = 0 Perfect saddle
k1 > 0, k2 < 0, |k2| = |k1|

Plane
k1 = 0, k2 = 0

Not possible

H > 0 (∪)

Synform

Synformal saddle
k1 > 0, k2 < 0, |k1| > |k2|
“Saddle in a valley”

Synform
k1 > 0, k2 = 0

Basin
k1 > 0, k2 > 0

• Mynatt et al., (2007) consider convex curvatures as positive
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