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Isostasy

* Refers to gravitational equilibrium

* Provides a physical rationale for
the existence of mountains

* Based on force balance and
buoyancy concepts

P={"p(ghydh

P = pressure (convention:
compression is positive)

p = density

g = gravitational acceleration

For constant p and constant g,
P =pgh

http://en.wikipedia.org/wiki/File:lceberg.jpg
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Isostasy

* Assumes a “compensation
depth” at which pressures
beneath two prisms are
equal and the material
beneath behaves like a
static fluid, where P, = P,

* Flexural strength of crust
not considered

* Gravity measurements yield
crustal thickness and
density variations

* Complemented by seismic
techniques

http://en.wikipedia.org/wiki/File:lceberg.jpg
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Isostasy
History

* Roots go back to da Vinci
* Term coined by Clarence Edward Dutton (USGS)
Post-1800 interest triggered by surveying errors in India

* Two main models: Pratt, Airy
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John Henry Pratt
(6/4/1809-12/28/1871)

* Pratt, J.H., 1855, On the n
attraction of the Himalaya
Mountains, and of the
elevated regions beyond
them, upon the Plumb-
line in India. Philosophical
Transactions of the Royal
Society of London, v. 145,
p. 53-100.

* British clergyman and
mathematician

* Archdeacon of India

k.focdn.net/ph k-snc1/v2100/67/88/730660017/n730660017_5593665_6871.jpg
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Sir George Biddell Airy
(7/27/1801-1/2/1892

* Airy, G.B., 1855, On the
computation of the Effect of the
Attraction of Mountain-masses,
as disturbing the Apparent
Astronomical Latitude of Stations
in Geodetic Surveys. Philosophical
Transactions of the Royal Society
of London. v. 145, p.101-104.

* British Royal Astronomer from
1835-1881

* Determined the mean density of
the Earth from pendulum
experiments in mines

* Contributor to elasticity theory
(telescope deformation)

* Opponent of Charles Babbage
from 1842 to ??

http://www.computerhistory.org/ iry/img/5-2-1.jpg
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Isostasy and Gravity Measurements

Expected deflection
Vertical due to mtn mass
plumb
bob

Observed Mountain

deflection
. Region of
1] \ .
; ' inferred
'\ / mass deficit
N 4
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Comparison of Isostatic Models

Py <P
Pratt Model Boundary of 15P2
imaginary hy = h
prism P19M1=P29M
P1/py =hy/hy
Py
Py hy P lig Blp1/py) =hy

----- Depth of compensation = h2
At isostatic equilibrium, P = constant at depth of compensation, so no flow

Airy Model
(e.g.,iceberg) P1<P2
p19hy+pygh3=pighy+pyghs
P
oy hy o1 hy Py (hy+h3)=pyhy+pyhg
(hy+h3)=hy+ (py/py)hg
(hy+h3) - (py/py)h3=h;
Py h3 Py 3l
Pq hg Mountain
/ root

------------- —--- -=-=-=--=---toooo-----Depth of compensation = h2+h3
Atisostatic equilibrium, P = constant at depth of compensation, so no flow
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Thermal Isostasy
(e.g., Turcotte and Schubert, 2002)

* Qceanic crust thickens
and increases in density
as it cools with time

* QOceanic crust thickens
and increases in density
with distance from ridge

http://openlearn.open.ac.uk/file.php/2717/via/oucontent/course/414/s279_1_014i.jpg
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Isostatic Rebound:
Lake Bonneville
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http://geology.utah.gov/online/pi-39/images/pi39-01.gif
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Shorelines of Lake Bonneville
Tilt Away from Lake

http://k43.pbase.com/g6/93/584893/2/79634985.GXilakLZ.jpg
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20. Rheology & Linear Elasticity

| Main Topics
A Rheology: Macroscopic deformation behavior

B Linear elasticity for homogeneous isotropic
materials
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20. Rheology & Linear Elasticity

Viscous (fluid) Behavior

http://manoa.hawaii.edu/graduate/content/slide-lava
2/16/12 GG303 13

20. Rheology & Linear Elasticity

Ductile (plastic) Behavior

http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg

http://hvo.wr.usgs.gov/kilauea/update/images.html
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20. Rheology & Linear Elasticity

Elastic Behavior

https://thegeosphere.pbworks.com/w/page/24663884/Sumatra

http://www.earth.ox.ac.uk/__data/assets/image/0006/3021/seismic_hammer.jpg
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20. Rheology & Linear Elasticity

Brittle Behavior (fracture)
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20. Rheology & Linear Elasticity

II' Rheology: Macroscopic
deformation behavior

A Elasticity

1 Deformation is
reversible when load is
removed

2 Stress (o) is related to
strain (g)

3 Deformation is not
time dependent if load
is constant

4 Examples: Seismic

(acoust'/c) waves, http://www.fordogtrainers.com
rubber ball
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20. Rheology & Linear Elasticity

II' Rheology: Macroscopic
deformation behavior

A Elasticity Elastic

1 Deformation is
reversible when load is
removed

2 Stress (o) is related to
strain (g)

3 Deformation is not
time dependent if load
is constant

4 Examples: Seismic Shear strain
(acoustic) waves,
rubber ball

Shear
stress
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior
B Viscosity

1 Deformation is
irreversible when
load is removed

2 Stress (o) is related
to strain rate (g)

3 Deformation is time
dependent if load is
constant

4 Examples: Lava
flows, corn syrup

2/16/12

. — NR—_
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior
B Viscosity

1 Deformation is
irreversible when
load is removed

2 Stress (o) is related
to strain rate ()

3 Deformation is time
dependent if load is
constant

4 Examples: Lava
flows, corn syrup

2/16/12
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20. Rheology & Linear Elasticity

II' Rheology: Macroscopic
deformation behavior

C Plasticity

1 No deformation until
yield strength is locally
exceeded; then
irreversible
deformation occurs
under a constant load

2 Deformation can
increase with time
under a constant load

3 Examples: plastics,

soils
http://www.therapyputty.com/images/stretch6.jpg
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior

C Brittle Deformation

1 Discontinuous
deformation

2 Failure surfaces
separate

http://www.thefeeherytheory.com
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic

deformation behavior Elastic-plastic (Prandtl)

D Elasto-plastic Spring
rheology
Shear
stress Loading curve
Unloading
curve

Shear strain
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic

deformation behavior
Visco-plastic (Bingham)

Shear
stress Dashpot
Yield — ]

strength

E Visco-plastic rheology

Shear strain rate
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior Power-law Creep G~ (é

F Power-law creep
1 é= (0, - 0,)" e-/RT)

2 Example: rock salt Shear
stress

Shear strain rate
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior  power-law creep o~ (@)
G Linear vs. nonlinear

behavior

Shear
stress

Shear strain rate
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20. Rheology & Linear Elasticity

Il Rheology: Macroscopic
deformation behavior
H Rheology=f (oij ,fluid
pressure, strain rate,
chemistry,
temperature)

| Rheologic equation of

real rocks = ?

2/16/12

Power-law creep o~ (&N

Shear
stress

Shear strain rate
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20. Rheology & Linear Elasticity

[l Linear elasticity
A Force and displacement

—/\/\/\/—IX‘ "

of a spring (from Hooke, ®&==—+"_"_"\ ———"'=>

1676): F= kx

1 F=force

2 k= spring constant
Dimensions:F/L

3 x =displacement

Dimensions: length L)

2/16/12

|
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20. Rheology & Linear Elasticity

I

B Hooke’s Law for Ly+AL L,

Il Linear elasticity (cont.)

o e=AL/L,
uniaxial stress: o = Ee
1 o = uniaxial stress ‘1’
2 E=Young’s ‘1’\1“1“1“1'
modulus K
Dimensions: stress o E

3 & =strain

Dimensionless
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20. Rheology & Linear Elasticity

I

[l Linear elasticity (cont.)

B Hooke’s Law for uniaxial L+AL 1
stress (cont.): g, = 0,/E 0 0 e=AL/L,

1o0,=0;=0
2 g,=€3=-Vg; ‘L‘Ll’&&&
a v = Poisson’s ratio
b visdimensionless

¢ Straininone
direction tends to
induce strain in
another direction

2/16/12 GG303 30
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20. Rheology & Linear Elasticity

[l Linear elasticity (cont.)

C Linear elasticity in 3D for
homogeneous isotropic
materials

By superposition:

1 g,,=0,/E—(0,+0,,)(V/E)
2 g, =0,/E—(0,+0,,)(V/E)
3 g,=0,/E—(0,+0,)(V/E)
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20. Rheology & Linear Elasticity

[l Linear elasticity (cont.)

C Linear elasticity in 3D for
homogeneous isotropic
materials (cont.)

4 Directions of principal
stresses and principal strains
coincide

5 Extension in one direction
can occur without tension

6 Compression in one
direction can occur without
shortening
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20. Rheology & Linear Elasticity

lIl Linear elasticity ¢
E Special cases
1 Isotropic (hydrostatic) —> -
stress
a 0,=0,=0; T

b No shear stress

2 Uniaxial strain

ag,~=~g#0

b Eyy= €,= 0 Y
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20. Rheology & Linear Elasticity

lll Linear elasticity 4 B =compressibility
D Relationships among B=1/K
different elastic moduli A =g, +e,+ €,= -p/K
1 G = pu =shear modulus p = pressure
G =E/(2[1+V]) 5 P-wave speed: V,
Exy = Oxy/2G 4
2 A =Llame' constant V, =4 K +§,u p

A=Ev/([1+V][1-2v]) 6 S-wave speed: V,
3 K= bulk modulus V= /
K = E/(3[1 - 2v]) s TNHIP
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Strike-view Cross Sections

Prepared by projecting features along strike
onto a cross section plane, where the cross
section plane is perpendicular to strike

* Shows the true inclination and thickness of
features

Lines of strike lie in geologic planes and
connect points of equal elevation
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Strike-View Cross Sections

PROJECTION OF STRUCTURAL INFORMATION
ONTO CROSS SECTIONS

||D ( rmine

200m

In a strike n the cross sectior a
win a wm (y o look tro gh and see along strike. In an arbitrary
ection the view is generally no | long strik

Nl(h\lhh ontal scale \hmp\h ame as the
ontal scale d n\ cale in the \n

2/16/12 GG612

36

2/16/12

18



Fault Mechanics: Vertical Strike-slip Faults

Vertical Strike-slip Faults

Assume one principal stress is vertical,
two principal stresses are horizontal

X Map View

y

Vertical fault

§ 7N\
+

The x'axis is parallel to fault strike
The y'axis is normal to fault strike
The z' axis points down

If Oy'x' > 0, left-lateral faulting .

]fcyr +=0,no faulting
]fGy’x’ <0, right-lateral faulting

Draw the arrows showing how the faults would slip,
and de ine whether the slip is right- or left-lateral

2/16/12

l Least compressive horizontal stress l

Most compressive
horizontal stress

-—
T Map View T
Least compressive
horizontal stress
-~
Most compressive horizontal stress
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Fault Mechanics: Dip-slip Faults

Assume one principal stress is vertical, Non-vertical Dip-slip Faults

two principal stresses are horizontal,
and the horizontal principal stresses
are parallel and normal to fault strike.

B

Fault

The x" axis is parallel to fault strike (at you)
The y”axis is normal to the fault

The z" azis points down-dip

If Oy"z" > 0, Inormal faulting

If Oy"z" < 0, reverse faulting

Draw the arrows showing how the faults would slip,
and determine whether the slip is normal or reverse
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Least compressive stress in plane
normal to fault strike

Cross section
View -

—

Most compressive
stress in plane
normal to fault strike

Cross section
View

Most compressive stress in plane
normal to fault strike

normal to fault strike

Least compressive
stress in plane
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