GG612
Lecture 3

Strain and Stress

Should complete infinitesimal strain
by adding rotation.

Outline
Matrix Operations Stress
Strain 1 Stress vector

0 N o Ll A WN R

General concepts 2 Stressata point

Homogeneous strain 3 Principal stresses
Matrix representations

Squares of line lengths

E (strain matrix)

€ (infinitesimal strain)

Coaxial finite strain

Non-coaxial finite strain
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* Representation of complicated quantities
describing strain and stress at a point in a clear

manner

Main Theme

Vector Conventions

* X =initial position

* X’ =final position U

* U =displacement 4(

X
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« AAT=ATA =]

Matrix Inverses

* [AB] = [BY][A"] < [AB][AB]" =[]

 [BTAY)= [AB]?

 ABBIA1=A[I]A L =[l]

Matrix Inverses and Transposes

e geb =

[“l a4

* [AB]"=[BT][AT] «— Qb aeh e aeh
[AB] _ b. a [jno‘

[a
b,
b.

b,

TI[b]

a, ]l T |=ab +ab,+ a,
"
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Rotation Matrix [R]

Rotations change the o [XT][X]= [X"RT] [RX]
orientations of vectors IXTI[N[X]= [XTT[RT] [R][X]
but not their lengths

* [1]=[RT][R]
XeX = | X[ |X|cosByy * But [I] = [R?][R], so
XoeX = X' oX’ o [RT] — [R-l]
X' =RX

XeX = [RX]*[RX]

XeX = [RX][RX] X
XeX = [XTRT] [RX] X’ ‘ i

Rotation Matrix [R] X

2D Example 9/)%y
. X (
o 5 2% | pretee X

x cosf sin@ X x” = cosfx + sin Oy a2 2
, = . -, . S>xT+y T =x"+y
y —sin@ cos6 y Yy’ =—sinBOx + cosOy

R = cos® —sinf
sin@ cos@

RR” = cos@ sinf cosf@ —sinf _| 10
—sin@ cos@ sin@ cos@ 0 1

R"=R"
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General Concepts

Deformation = Rigid body motion + Strain
Rigid body motion

Rigid body translation B — @ nsiation

—
e Treated by matrix addition \
[X'] = [X] + [U] // " Translation
Rigid body rotation “ o Rotation
e Changes orientation of lines, ' 4 \ Translation
but not their length [ "+ Rotation
e Axis of rotation does not rotate; \/ + Strain

it is an eigenvector
e Treated by matrix multiplication
[X'] = [R] [X]

General Concepts

Normal strains

X1

Change in line length )
— Extension (elongation) = As/s, X{*
— Stretch=S=5"/s,
— Quadratic elongation = Q = (s'/sy)? s1

Shear strains :
Change in right angles

Dimensions: Dimensionless
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Homogeneous strain

Initial state Final state
* Parallel lines to parallel .
lines (2D and 3DF; drce 5 lﬂ
* Circle to ellipse (2D)
* Sphere to ellipsoid (3D) @ Zfﬂ?:e
"!ii’!)<1$r Principal
Reciprocal -

train ellipse @
”

Homogeneous strain
Matrix Representation (2D)

[X']=[F][x]

]
SHe

Initial state

Unit
circle

Final state

-

Reciprocal
train ellipse W

Strain
ellipse
+
F-1 Principal
axes
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Matrix Representations:

Positions (2D)

ox’ ox’
dx’ = —dx+—d y X1. /
X o X ay y A 1 dy
’ ’ X 7
dy’zay dx+ay dy 0% dx’
ox dy
ox”  ox’ .
d | | ox dy dx X «{T X1
day || oy oy || dy d dy
ox dy oo
X
[dx’]=F][axX]
Matrix Representations:
Positions (2D)
[ | '
A X1 ’
{d} S {d} dy
ay | | 9y oy dy Xo' ;
ox dy dx
If derivatives are constant (e.g., at a point) P
X 74 M
'.»"{Tdy
X'l _| a b X - dx
L
X
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Matrix Representations
Displacements (2D)

Ju Ju

du=—dx+—d
ox dy Y y ‘.
1
dv:?dx+?dy Uy
X ] y ) XO Uo Uodu dv
du Ou 1 Uy
du |_| ox dy | dx _. dy
av || oo || dy | | Ko dx
ox dy f «
[au]=[J,]lax]
Matrix Representations
Displacements (2D)
I/t_a—ux+a—u
ox 8yy y ‘.
v dv 1 U
v:a—x+a—y 1
X y XO Uo Uodu dv
du ou 1 Uy
w | | ox 9y X . dy
v v v |y Xo A7 dx
ox dy f «

[U]=]7.]1X]

If derivatives are constant (e.g., at a point)
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Matrix Representations
Positions and Displacements (2D)

U=X'-X pJ ,
X1
U=FX-X=FX-IX Uq
U=[F-1]Xx Xo'/fVo
F-I]=J il
[F-1]=J, X1
X0
[‘]u]: a—-1 b
c d-1
X
Matrix Representations

Positions and Displacements
Lagrangian: f(X) Y
[x’]=[F][x] X1, 0
U=X-X=FX-X 1
U=FX-IX=[F-I|X Xo'/[Vo
Eulerian: g(X’) 7,

-1 Iy X1
[x]=[F][x' Xo/ 4
U=X'-X=X-F'X

X

U=[1-F']x’

2/14/12



Squares of Line Lengths

s Z‘XHX‘COS(Q)&)

e R4 X1. dy’
ss=XeX=X"X ,
X0 ;
C=X'X dx
S, 2 — X/ ° v’ X {Td))()

s'? =[Fx| [FX] o
s'?=X"F'FX X
E (strain matrix)
S'2_S2_dXT[FTF—1]dX Y X140 dv

2 2 Y
s'?—s* dX"[E)dx X0 4
2 2
. |FTF-1] oy
=0 Xo 4% X1
2 A {T dy
7 dx
X

2/14/12
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€ (Infinitesimal Strain Matrix, 2D)

E=[F'F-1I]= %[[Ju 1] [J,+1]-1]

8_u+1 ﬁ 8_u+1 a—u
E—l ox ox ox dy 1o
2 ou v dv ov 0 1
-— - +I —  —+1
dy  dy ox  dy

If partial derivatives << 1, their squares can be dropped
to obtain the infinitesimal strain matrix €

(au Ju ) du dv
ox ox dy ox

ou dv v dv
dy ox dy dy

N | —

€ (Infinitesimal Strain Matrix, 2D)

du du | (a_u+a_uJ [a_u@]
ax  dy ax  d dy o
J = x dy g:l X ox y ox :l[JL‘+JL‘T:|

v v 2 (ov ou) (ov ov 2

W —+— —+—

dx dy ] ox dy dy dy
o '[a_m_u) duon) | (30 e (0o
ox dy | 1| \ox ox dy ox 1| Lox ox dy ox
I v 2 oy au) (v o) | 2| (v _aw) (v _av
ox dy dx dy dy dy ox dy dy 9y

J, = £ + (0]

€ is symmetric
w is anti-symmetric
Linear superposition

2/14/12
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€ (Infinitesimal Strain Matrix, 2D)
Meaning of components

Pure strain
Ju 1(ou ov without rotation
(a_) E(a_fa_x]
&=

Lo ) (o

2\dy ox dy
@
ds _ g)cc gxy 1 _ gm
ﬂ €y &, 0 €y
ds

First column in &: relative displacement vector for unit element in x-direction
€, is displacement in the y-direction of right end of unit element in x-direction

€ (Infinitesimal Strain Matrix, 2D)
Meaning of components

Pure strain
Ju 1(ou ov without rotation
(a_) E(a_fa_x]
E =

Lo ) (o

2\dy ox dy
ﬂ
dS — g)cx Exy O _ 81\',\’
ﬂ €y &y 1 g,
ds

Second column in €: relative displacement vector for unit element in y-direction
€, is displacement in the x-direction of upper end of unit element in y-direction

2/14/12
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€ (Infinitesimal Strain Matrix, 2D)
Meaning of components

) Yo )]
o 209y ox y (/V/ Y))(1¥ Pure strain

without rotation
o, o) (o
2\ dy odx dy X1’:'

€,1 = €, = elongation of line parallel to x-axis dy
€)= €, = (A8)/2 :
€y = €, = (A6)/2

(Qu/ay)dy
y1 =tan"1(yq) =-0v/dy

v = tan"1(y;) = du/dx

€, = €,, = elongation of line parallel to y-axis (0v/ox)dx Xo'
; T 4. _(9u/ox)dx
A0 _ -y _Ifov du dx XO X
2 2 2{dx dy

Shear strain > 0 if angle between +x and +y axes decreases

w (Infinitesimal Strain Matrix, 2D)
Meaning of components

Pure rotation

1 [au av] without strain
_ 2{dy ox »
1 &_a_u 0 ox Oy
2\dx  dy
X
du
ds 0 -o, 1 0 '
= = w, << 1 radian
w e 0 o] e
ds

First column in w: relative displacement vector for unit element in x-direction
w,, is displacement in the y-direction of right end of unit element in x-direction

2/14/12
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w (Infinitesimal Strain Matrix, 2D)
Meaning of components

Pure rotation

1 [au av] without strain
_ 2{dy ox »
1 &_a_u 0 ox Oy
2\dx  dy
X
du
ds 0 -o, 0 0 '
= = w, << 1 radian
dv o, 0 1 o,
ds

Second column in w: relative displacement vector for unit element in y-direction
w,, is displacement in the negative x-direction of upper end of unit element in y-direction

€ (Infinitesimal Strain Matrix, 2D)
Meaning of components

(auj 1(814_'_8\/] Gudvid ,
EW N v/oy)dy ure rotation
e= o 2\dy ox X1’ without strain
l(a_uij (H_J
2 By ox ay X‘] (au/ay)dy

y1 =tan"1(yq) =-0v/dy

&, = €,, = elongation of line parallel to x-axis dY
€1, = €, = (A8)/2 :
€y = €, = (A6)/2

€, = €,, = elongation of line parallel to y-axis

v = tan"1(y;) = du/dx

(0v/ox)dx Xo'

- “2lox oy

A0 _ (v, — ) _1(&8_”} dx oy, X
2 2 2

Shear strain > 0 if angle between +x and +y axes decreases

2/14/12

14



Coaxial Finite Strain

Pl otk (r=alx

« F=FT

e All values of X’eX’ are

positive if X'#0

* Fis positive definite
— Fhas aninverse

— Eigenvalues >0

— F has asquare root

N S
[E—

4 = =

2

25 -2 -15 -1 -0.5 [ 0.5 1 15 2 25

Coaxial Finite Strain

SR

1 Eigenvectors (X) of F are
perpendicular because F is

symmetric (X;*X, = 0)

2 X, X, solve d(X’eX’)/d6 =0
3 X, X, along major axes of

strain ellipse
4 X=X, ; X=X,

5 Principal strain axes do not

rotate

ot

Strain eIIip

Reciprocal
Strain ellipse

25 -2 -15 -1 -0.5 [ 0.5 1 15 2 25

2/14/12

15



Non-coaxial Finite Strain

The vectors that Strain

transform from the axes i? ellipse
of the reciprocal strain ‘ pe Pincipal

ellipse to the principal axes

axes of the strain ellipse Reciprocal
tate train ellipse @

ro et /N

The rotation is given by F-1 ‘

the matrix that rotates
the principal axes of the
reciprocal strain ellipse to
those of the strain ellipse

}

S, A WN R

O 00 N O

Non-coaxial Finite Strain

[X']=[F] [X] Initial state Final state
X' oX'=[X][FTF][X] ‘ u\ //—\X / 37
[FTF] is symmetric 0 \cirde | K 0"\ fEllips
Eigenvectors of [FTF] give / /L /
principal strain directions

Square roots of eigenvalues of Strain
[FTF] give principal stretches w elli
[X]=[F-1][X’] *FT

X X=[X1[FATFX] />

[F_l]T[F—I] is Symmetric Reciprocal /
Eigenvectors of [F1]T[F1]give train ellipse ‘v>
principal strain directions - ‘.
Square roots of eigenvalues of Fl $’
[F1]T[F1] give (reciprocal)

principal stretches

2/14/12
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Non-coaxial Finite Strain

The Strain e”ipse and Initial state Final state

the reciprocal strain Xo t’;‘} 3 MY
) —>

ellipse have the same

eigenvalues but

different eigenvectors. stain
[FTR)=[[F]T[F1]] 2 'ﬁ el

[[F)T[F4) =

[[FL2[FLT]A]=FFT. %:Eﬁ. "‘v‘
HEN

Non-coaxial Finite Strain

Strain ellipse and
reciprocal strain ellipse -
have equal eigenvalues,
different eigenvectors.

[FTFI=((F(F]]
[[F-l]T[F-l]]-l — 05
[[FAFATT) = FFT,

osf ¢

Reciprocal
Strain ellipse

2/14/12
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Coaxial vs. Non-coaxial Strain

25 -2 -1.5 -1 -0.5 0 05 1 15 2 25 ?2.5 -2 -1.5 -1 -05 0 05 1 15 2 25
>> [X,L] = eig(F) >>[X1,L1] = eig(F*F) >> [X,L0]=eig(F) >>[X2,L1])=eig(F'*F) >>[X1,L2]=eig(F*F’)
X= X1= X= X2 = X1=
-0.8507 0.5257 -0.8507 0.5257 1.0000 0.7071 -0.9732 0.2298 -0.8507 0.5257
0.5257 0.8507 0.5257 0.8507 0 0.7071 0.2298 0.9732 0.5257 0.8507
L= 1= Lo= L1= L2=
0.3820 0 0.1459 0 1 0 0.7639 0 0.7639 0
0 2.6180 0 6.8541 0 2 0 5.2361 0 5.2361

Coaxial vs. Non-coaxial Strain
Coaxial Non-coaxial
* F=FT(Fis symmetric) * F#F"(Fis not symmetric)
* FFT=FF=F2(F?is symmetric) * F'F#F'F (but both symmetric)
e FX= )\X e FX= )\X
* [FFT]X = AX o« [FFTIX,=A2X, ;A = A, 2 A
o [FTFIX = A2X . [FFT]X2 = )\ZZX2 ;XX #X,
e F=U=V e F=RU= R[FTF]1/2=VR= [FTF] 1/2R
F=[1 1;1 2];  F2=[2 3;3 5]; F=[1 1,0 2); F'F=[1 1;1 5]; FF'=[2 2;2 4];
>> [X,L] = eig(F) >>[X1,L1] = eig(F*F) >> [X,L0]=eig(F) >> [X2,L2]=eig(F'*F) >>[X1,L1]=eig(F*F’)
X= X1= X= X2 = X1=
-0.8507 0.5257 -0.8507 0.5257 1.0000 0.7071 -0.9732 0.2298 -0.8507 0.5257
0.5257 0.8507 0.5257 0.8507 0 0.7071 0.2298 0.9732 0.5257 0.8507
L= L= o= 2= 1=
0.3820 0 0.1459 0 1 0 0.7639 0 0.7639 0
0 2.6180 0 6.8541 0 2 0 5.2361 0 5.2361
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Polar Decomposition Theorem

Suppose

(1) [FI=[R]Y],

where R is a rotation matrix and U is a

symmetric stretch matrix. Then

(2) FTF=[RU]T[RU] = UTRTRU
=U'RRU=UTU

However, U is postulated to be positive

definite, so

(3) UU=U2=FTF

Since FTF gives squares of line lengths, if U

gives strains without rotations, it too should

give the same squares of line lengths. Hence

(4) U=[FTF]¥2
From equation (1):
(5) R=FU?

Initial state Final state
B 3 |
drj F hse

Strain
ellipse

Q -

F-1 Principal
axes
Reciprocal

train ellipse

F-1

<—
@

Polar Decomposition Theorem

Suppose

(1) [F=IVIIRT,

where R" is a rotation matrix and V is a

symmetric stretch matrix. Then

(2) FFT=[VR"] [VR*]" = VR*R*TVT
=VR'R™IVT = yWT

However, V is postulated to be positive

definite, so

(3) WWT=V2=FFT

Since FFT gives squares of line lengths, if V

gives strains without rotations, it too should

give the same squares of line lengths. Hence

(4) V=[FFT]12
From equation (1):
(5) R"=V1F

Initial state Final state
m 3 |
drj F hse

Strain
ellipse

Q -

F-1 Principal
axes

Reciprocal
train ellipse @
4—1 O
"N

2/14/12
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Polar Decomposition Theorem

Proof that the polar decompositions are Initial state Final state
unique.
Unit r
circle > Ellips
Suppose different decompositions exist K /
F=RU, =RU,

Strain
X' o X' =[FX]o[FX]|=[FX]|'[FX]= X"F"FX @ ellipse
T S -
F'F= [RIUI] [RIUI] =U/R'RU, =U/R'RU, ‘ P Principal
axes
=U/IU,=U]U,=UU, =U}

Reciprocal
T _ train ellipse @
F'F= [RzUz] [RzUz]: U; Ry RU, =U; R,'RU, “@

=U!IU, =UlU, =UU, =U? e ‘
U =0
U =U,=U
F=RU, = RU,
R=R=R

Polar Decomposition Theorem

*The same procedure can be followed to show Initial state Final state
that the decomposition F=VR* is unique. Unit

These results are very important: F can be circle _F> Ellips
decomposed into only one symmetric matrix \ /

that is pre-multiplied by a unique rotation

matrix, and F can be decomposed into only Strain

one symmetric matrix that is post-multiplied @ ellipse

by a unique rotation matrix. % 11_ Principal
axes

Reciprocal
train ellipse @
TS

20



Polar Decomposition Theorem

Proof that F = RU = VR Initial state Final state
Unit r
circle N Ellips

Intuitively, we might expect that R = R*. This is straightforward to show.

(g8) F=VR =IVR = [R’[R‘ TJVR’ =K [[R“ T'vr *] =K [[R‘]T VR Strain
elllpse
Now consider the character of I:[R ]1 VR“} by taking its transpose 1
-

[(xTve] = T[[R T J=[(& YO IR T ] =[R T T [R]=[RT [

eaprocal
train elllpse
The transpose of [[ R T VR*] equals [[R ]T VR‘] s0 [[R ]T VR‘J is symmetric @
(definite-positive) matrix. It also is pre-multiplied by a rotation matrix. That means F 1
equation (gg) can be re-written as

F=RU,

Equating the two right sides above

F=RU=RU,

The results of (ff) show that the rotation matrix and U-matrix are uniquely defined,

so R =R* hence
F=RU=VR.

Principal
axes

Polar Decomposition Theorem

Comparison of eigenvectors and Initial state _Final state
eigenvalues V M N/ )
Ellips

circle >
Now compare the eigenvectors and eigenvalues of U and V (see example 3.2.1 of Lai |\ / / Q
etal.). Suppose X is an eigenvector of U and A is an eigenvalue of U.

Strain
UX = 1X @ ellipse
. . 'Q <—
RUX = ARX ‘ Principal
N N axes
[RU]X = ARX

Reciprocal

[RU] — [VR] -F train ellipse ‘w
. . - O
[VR]X = ARX P ‘@
v[R%]=A[R%]

So RX is an eigenvector of V, and A is an eigenvalue of V. Since A is also an

eigenvalue of U (see the first step), that means the eigenvalues of U and V are the

same, even though the eigenvectors are not.

The rotation matrix R rotates the eigenvectors of U to the orientation of the

eigenvectors of V. This means that the matrix U describes the principal axes of the

reciprocal strain ellipse, and the matrix V describes the principal axes of the strain

ellipse.

2/14/12
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Stress

Stress vector
Stress state at a point
Stress transformations

A W N

Principal stresses

16. STRESS AT A POINT

http://hvo.wr.usgs.gov/kilauea/update/images.html

2/14/12 GG303 44

2/14/12
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16. STRESS AT A POINT

| Stress vector (traction) on a plane

AT=limF/A
A—0
B Traction vectors can be added as
vectors
C A traction vector can be resolved
into normal (t,) and shear (t,)
components
1 Anormal traction (t.) acts
perpendicular to a pnlane
2 Ashear traction (t,) acts
parallel to a plane
D Local reference frame
1 The n-axis is normal to the
plane

2 The s-axis is parallel to the
plane

2/14/12 GG303

16. STRESS AT A POINT

[l Stress at a point (cont.)

A Stresses refer to
balanced internal "forces
(per unit area)". They
differ from force vectors,
which, if unbalanced,
cause accelerations

B "On -in convention": The
stress component o, acts
on the plane normal to
the i-direction and acts in
the j-direction
1 Normal stresses: i=j
2 Shear stresses: i#j

2/14/12 GG303

-~

OXX X

oyy! !

Normal stresses

y
oy
ad
oxy | X

D
ny
Shear stresses

46
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16. STRESS AT A POINT

Il Stress at a point

C Dimensions of stress:
force/unit area

D Convention for stresses
1 Tension is positive
2 Compression is
negative
3 Follows from on-in
convention

4 Consistent with most
mechanics books

5 Counter to most
geology books

2/14/12 GG303

-~

OXX X

oyy! !

Normal stresses

y
oy
ad
oxy | X

D
ny
Shear stresses

47

16. STRESS AT A POINT

Il Stress at a point
C o = Ou Oy 2-D
v o, O, | 4components
3-D
9 components
E In nature, the state of

stress can (and usually
does) vary from point to

point
F For rotational equilibrium,
0-xy = ny' O-xz = szl 0-yz = o-zy

2/14/12 GG303

-~

OXX X

oyy! !

Normal stresses

y
oy
ad
oxy | X

D
ny
Shear stresses

48
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16. STRESS AT A POINT

IV Principal Stresses (these have T chyy Lny
magnitudes and orientations) Oxx —

A Principal stresses act on N — r Oxy
planes which feel no shear OXX x Oxy ‘ X
stress ~ —

B The principal stresses are nyl l G:yx
normal stresses. Normal stresses Shear stresses

C Principal stresses act on
perpendicular planes 3O oA

D The maximum, intermediate,
and minimum principal \ {
stresses are usually e
designated o,, 0,, and o,,
respectively. oA

E Principal stresses have a single s
subscript.

Principal stresses
2/14/12 GG303 49
. . y y
IV Principal Stresses (cont.) b towy _ |10y
F Principal st wil Bl P oy
rincipal stresses Oy % Oxy ‘ 3
represent the stress - ] "
—
i oyy Oyx
state most S|mp|y Normal stresses Shear stresses
1O
G ol O 2D IS
0y = 0 o, 2 components \ 1
el
o, 0, O,
H o, = w O, O 3-D o
3 components 62
Principal stresses
2/14/12 GG303 50

2/14/12
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19. Principal Stresses

http://hvo.wr.usgs.gov/kilauea/update/images.html

2/14/12

GG303 51

17. Mohr Circle for Tractions

From King et al., 1994
(Fig. 11)

Coulomb stress change
caused by the Landers
rupture. The left-lateral
ML=6.5 Big Bear rupture
occurred along dotted
line 3 hr 26 min after the
Landers main shock. The
Coulomb stress increase
at the future Big Bear
epicenter is 2.2-2.9 bars.

2/14/12

N\ NCONTN N N

/
/
/4
/
/
/
/
/
/
7
V.
/
/

S NN NN NN
SR . <oNON N o

Coulomb stress change caused by Landers
and Joshua Tree Earthquakes before
occurrence of the Big Bear shock (bars) 210 05 00 05 1.0

http://earthquake.usgs.gov/research/modeling/papers/landers.php

GG303 52
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19. Princi

Il Cauchy’s formula

A Relates traction
(stress vector)
components to stress
tensor components in
the same reference
frame

B 2D and 3D

pal Stresses

Note: all stress components
shown are positive

treatments analogous

Ct= 0;n;= No;;

2/14/12

GG303

19. Princi

Il Cauchy’s formula (cont.)

C = n;o;;

1 Meaning of terms
a T =traction
component

b n.=direction cosine
of angle between n-

direction and j-
direction

¢ o;=traction
component

d tand g;actin the
same direction

2/14/12

pal Stresses

GG303

2/14/12

27



19. Principal Stresses

Il Cauchy’s formula (cont.)
D Expansion (2D) of t, = n; g;

1 t,=n0,+n,0,

2 t1,=n,0, +n0,

X
2/14/12 GG303 55
19. Principal Stresses
Il Cauchy’s formula (cont.)
E Derivation: Note that all contributions must act in x-direction

Contributions to T,

1 Q:ww6m+wmqw

F (A\FY (A \F®
 J S ke U bt SR (A
A la)a A ]A

n n X n

3 t=n0,+n0,

2/14/12 GG303

2/14/12
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19. Principal Stresses

Il Cauchy’s formula (cont.)

E Derivation:
Contributions to T,

SN E) (4)
lz,=w'o, +wo,

(3)
2 i = i i + i
An An Ax An

3 t1,=n0,+n0,

2/14/12 GG303

Note that all contributions must act in y-direction

19. Principal Stresses

Il Cauchy’s formula (cont.)
F Alternative forms

T,=n0,, +n0,
T,=n0,+n0,

1= n;o;;
12 T,=0;n,
3 1= o;n;
X 6\/\ GVX GI/\'? nX
4 . .
7, |=| o0, 0O, O, n,
Tz O-xz Gyz Gw n7
5 Matlab
— 3k
a t=s"n n =cos6, =a
b t=s*n ! "
2/14/12 GG303

2/14/12
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19. Principal Stresses

Il Principal stresses (eigenvectors and eigenvalues)

6)‘}' G)’}’

] G’(X GVX‘ nt
’ :[ ’ : H ’ } Cauchy’s Formula
, n,

A ( T,
T —[ n, } Vector components

B tol=lr
Let A=

N
I’l». T

The form of (C) is [A][X=A[X], and [o] is symmetric
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Frqm previous notes . .
[l Eigenvalue problems, eigenvectors and eigenvalues (cont.)

=> J Characteristic equation: |A-IA|=0
—> 3 Eigenvalues of a symmetric 2x2 matrix A ={ Z Z }

(a+d)x(a+d) —4(ad—b?)

a A, A = 5
o 12 (a+d)*y(a+2ad +d)’ - 4ad +4b’
124 = 2
2 2 Radical term
] l]’%:(a+d)i\/(a—2ad+d) +4p? | Radical e
2 negative.
_7\? 2 Eigenvalues are
5 d ll,lz=(a+d)i (621 d) +4b real.
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9. EIGENVECTORS, EIGENVALUES, AND
From previous notes FINITE STRAIN

L Distinct eigenvectors (X,, X,) of a symmetric 2x2 matrix are
perpendicular

Since the left sides of (2a) and (2b) are equal, the right
sides must be equal too. Hence,

4 A (X,eX,) =, (X;*X,)

Now subtract the right side of (4) from the left

5 (A, =A)(X,X,) =0

e The eigenvalues generally are different, soA,— A, 2 0.
e This means for (5) to hold that X,*X; =0.

—2» ¢ Therefore, the eigenvectors (X,, X,) of a symmetric 2x2
matrix are perpendicular
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19. Principal Stresses
[l Principal stresses (eigenvectors and eigenvalues)

Gm O-yx nx — ﬂ, nx
o, O, n, n, Oxx

D Meaning
1 Since the stress tensor is symmetric, a

reference frame with perpendicular axes Ay
defined by n, and n, pairs can be found ¢ Oyy
such that the shear stresses are zero

2 This is the only way to satisfy the
equation above; otherwise Oy N, #0,
and o, n, #0

3 For different (principal) values of A, the
orientation of the corresponding

principal axis is expected to differ

2/14/12 GG303 62

2/14/12

31



2/14/12

19. Principal Stresses

V Example oy A
Find the principal stresses —

B A
6.=—4MPa G =-4MPa } o

given o, =

0,=—4MPa o, A =—-4MPa S
’ - \/
s 6\\\4. 64.*\ \
& ot
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19. Principal Stresses
V Example Sy A
G, =-4MPa G, =-4MPa =
o. = y Oxy
Y o, =—4MPa o, =-4MPa 4%[ L,X
First find eigenvalues (in MPa) ~T
Y
2 2 . 6\\\% 6"':\ .
P _(a+d)i (a—d) +4b o T
1772 2
\64
ALA, = 417:—4i4:0,—8
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19. Principal Stresses
IV Example

0,=—4MPa o, =-4MPa
""| 6,=-4MPa o, =-4MPa

N

11,12:_417:—4i4:0,—8 «—— Eigenvalues (MPa)

Then solve for eigenvectors (X) using [A-IA][X]=0

4 — _ n,
For 2,=0: 40 4 =| 0 =>—4n —4n, =0=n =-n,
] 4 —4-0 n, 0 ) : :

—4-(-8 —4 n
For A,=-8: (-8) S =>4n, —-4n,=0=>n_=n
e —4 o, —(-8) n, 0 ’ 2
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19. Principal Stresses

IV Example
Eigenvalues Eigenvectors
o,=—-4MPa o, =-4MPa
o.=| » A, =0MPa n.=-n
v o.=—4MPa o.=-4MPa
" » ﬂvz =—-8MPa n.=n,
2 2 _
ot =1 A1 =0 MPa -
2 =1 y |/ n,+n, =1
— 2n’ =1
"‘_\/5/2 ny = 0.7071 )
n =22 . n =\2/2
ny=-0.7071 X1 n,=~2/2
””””” : Note that X;*X, =0
Principal directions are perpendicular
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19. Principal Stresses
V Example
Matrix form/Matlab

Syy A oy >> sij = [-4 -4;-4 -4]
’ sij =

T_L S -4 -4
‘_} x %) -4 -4

>> [v,d]=eig(sij)

V=
0, \V 0.7071 |-0.7071 Eigenvectors
0.7071 ) 0.7071 (in columns)
d=
sllo Corresponding
|| eigenvalues
00 (in columns)
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Summary of Strain and Stress

 Different quantities with different dimensions
(dimensionless vs. force/unit area)

* Both can be represented by the orientation and
magnitude of their principal values

* Strain describes changes in distance between points
and changes in right angles

* Matrices of co-axial strain and stress are symmetric:
eigenvalues are orthogonal and do not rotate

* Asymmetric strain matrices involve rotation
* Infinitesimal strains can be superposed linearly
* Finite strains involve matrix multiplication
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