GG611 Structural Geology Section **Steve Martel POST 805** smartel@hawaii.edu Lecture 4 **Rheology and Mechanics**

Stresses Control How Rock Fractures

http://hvo.wr.usgs.gov/kilauea/update/images.html

Outline

- I. Stress at a point
- II. Strain at a point
- III. Rheology
- IV. Mechanics of fractures and folds
- V. Appendix: Eigenvectors, eigenvalues, and principal stresses

- Stresses refer to balanced internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
- "On -in convention": The stress component σ_{ij} acts <u>on</u> the plane normal to the i-direction and acts <u>in</u> the j-direction
 - 1 Normal stresses: i=j
 - 2 Shear stresses: i≠j

- Dimensions of stress: force/unit area
- Convention for stresses
 - Tension is positive
 - Compression is negative
 - Follows from on-in convention
 - Consistent with most mechanics books
 - Counter to most geology books

3-D

•
$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$$
 2-D
4 components
 $\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \end{bmatrix}$

$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} 3-D \\ 9 \text{ components} \end{bmatrix}$$

• For rotational equilibrium,

$$\sigma_{xy} = \sigma_{yx}, \sigma_{xz} = \sigma_{zx}, \sigma_{yz} = \sigma_{zy};$$

stress matrix is symmetric

• In nature, the state of stress can (and usually does) vary from point to point

- Analogy with vectors
 - The components of a vector vary with the reference frame, even though the vector does not
 - For certain reference frame orientations, some vector/tensor components are zero
 - The non-zero components are meaningful and illuminating in a reference frame where some components are zero

Principal Stresses

- Have magnitudes and orientations
- Principal stresses act on planes which feel no shear stress
- Principal stresses are normal stresses
- Principal stresses act on perpendicular planes owing to symmetry of stress tensor
- The maximum, intermediate, and minimum principal stresses are usually designated σ_1 , σ_2 , and σ_3 , respectively
- Designated by a single subscript

Principal Stresses

* If $\sigma_1 = \sigma_2 = \sigma_3$, the state of stress is called isotropic. This occurs beneath a still body of water.

Application: Vertical Strike-slip Faults

Application: Dip-slip Faults

Strain at a point: Basic Concepts

- Normal strain (ε): change in relative line length
- Shear strain (γ): change in angle between originally perpendicular lines
- Volumetric strain (Δ): change in relative volume
- Based on rates of change of displacement as a function of position
- Strains are <u>dimensionless</u>

Finite strain at a point

- Chain rule relates difference in initial positions (dx and dy) of neighboring points to difference in displacements (dx' and dy')
- At a point, displacement derivatives are constants
- Matrix relating difference in displacement [dU] to difference in initial position [dX] contains constants
- Unit circles (spheres) deform to ellipses (ellipsoids)

$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} \\ \frac{\partial u_y}{\partial x} & \frac{\partial u_y}{\partial y} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} \Rightarrow [dU] = [J_u][dX]$$

Infinitesimal strain at a point

- In infinitesimal strain, displacement derivatives are small relative to 1
- The infinitesimal strain matrix contains normal strains (on main diagonal) and shear strains (offdiagonal terms)
- The infinitesimal strain matrix is symmetric
- Infinitesimal principal strains are perpendicular

$$\varepsilon_{ij} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{\partial u_y}{\partial y} \end{bmatrix}$$

$$\boldsymbol{\varepsilon}_{ij} = \left[\begin{array}{cc} \boldsymbol{\varepsilon}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\varepsilon}_2 \end{array} \right]$$

Rheology

- The relationship between the flow or deformation of a material and the loads causing the flow or deformation
- Typically relates stress to strain, or stress to strain rate
- In reality, rheology is a complicated functions of pressure, temperature, fluid content, etc.
- We generally use simple rheologic models

Rheology: Viscous (fluid) behavior Shear strain rate is proportional to shear stress

http://manoa.hawaii.edu/graduate/content/slide-lava

Rheology: Ductile (plastic) behavior No strain until stress reaches a critical level

http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg

http://hvo.wr.usgs.gov/kilauea/update/images.html

10/16/18

GG303

17

Rheology: Brittle behavior (fracture) Deformation is discontinuous

Rheology: Linear elastic behavior

- Deformation reverses when stress is relieved
- Stress and infinitesimal strain are linearly related
- Principal strains and principal stresses are parallel in isotropic materials

$$[\sigma] = [C][\varepsilon]$$

https://thegeosphere.pbworks.com/w/page/24663884/Sumatra

http://www.earth.ox.ac.uk/__data/assets/image/0006/3021/seismic_hammer.jpg

10/16/18

Mechanics of Fractures and Folds

- Displacement and stresses over a region can be obtained by solving boundary value problems
- Requirements
 - Body geometry
 - Boundary conditions (e.g., stress components or displacements acting <u>on</u> a boundary surface)
 - Rheology
 - Governing equation(s) for equilibrium and compatibility
 - General solution
 - Specific solution that honors boundary conditions

Geologic Problem: Radiating Dikes

Shiprock, New Mexico

Both images from http://en.wikipedia.org/wiki/Shiprock#Images

Aerial view showing radial dikes

Displacement Field Around a Pressurized Hole in an Elastic Plate

Geometry and boundary conditions

Displacement field

For $u_0 > 0$

$$(u_r/u_0) = (a/r)$$

Displacement and Stress Fields Around a Pressurized Hole

Displacement field

Stress field

 $For u_0 > 0: (u_r/u_0) = (a/r)$

For
$$P < 0: (\sigma_1/P) = -(a/r)^2 (\sigma_2/P) = (a/r)^2$$

GG611

Dikes Open in Direction of Most Tensile Stress, Propagate in Plane Normal to Most Tensile Stress

http://hvo.wr.usgs.gov/kilauea/update/images.html

Modeled vs. Measured Displacement Fields Around a Fault

Model for Frictionless, 2D Fault in an Elastic Plate

Model Displacement field

GPS Displacements, Landers 1992

Modeled vs. Measured Co-seismic Displacement, Landers Earthquake

(based on Massonnet et al., 1993)

GG611

Predicted "Coulomb" Stress Changes Caused by 1992 Landers Earthquake, California

- From King et al., 1994 (Fig. 11)
- **Coulomb stress change** ulletcaused by the Landers rupture. The left-lateral ML=6.5 Big Bear rupture occurred along dotted line 3 hr 26 min after the Landers main shock. The **Coulomb stress increase** at the future Big Bear epicenter is 2.2-2.9 bars.

http://earthquake.usgs.gov/research/modeling/papers/landers.php

Stress Fields Around a Frictionless, 2D Model Fault in an Elastic Plate vs. Observations

Model stress field: Most tensile stress & stress trajectories Tail cracks at end of left-lateral strike-slip fault

Note location and orientation of "tail cracks"

GG611

Folding Along a Fault

From Grasemann et al., 2005

Folding Along a Fault, Koae Fault System

From Martel and Langley, 2006

"Fault" in Foam Rubber, Before Slip

"Fault" in Foam Rubber, After Slip

Other Mechanisms for Folding

Flexure over intrusions

From lateral shortening

GK Gilbert's first sketch of a laccolith

http://pangea.stanford.edu/~annegger/images/colorado%20plateau/laccolith_sketch.jpg

Experimental device of Bailey Willis

From Willis, 1894

Appendix: Eigenvectors, eigenvalues and principal stresses

Traction Vector on a Plane

- Stress vector (traction) $\tau = \lim_{A \to 0} F / A$

 - Traction vectors can be added as vectors
 - A traction vector can be resolved into normal (τ_n) and shear (τ_s) components
 - A normal traction (τ_n) acts perpendicular to a plane
 - A shear traction (τ_s) acts parallel to a plane
 - Local reference frame
 - n-axis is normal to plane
 - s-axis is parallel to plane

Cauchy's Formula

- Transforms stress state at a point to the traction acting on a plane with normal **r**
- Transforms normal vector \vec{n} to the traction vector $\vec{\tau}$

• τ _j =	n _i	σ_{ij}	
Traction component that acts <u>in</u> the j-direction	Dimensionless weighting factor (cosine between the n- and i- directions;)	Stress component that acts on a plane with its normal in the j-direction, and that acts <u>in</u> the j-direction	
• Expansion (2D) • $\tau_x = n_x \sigma_{xx} + n_y \sigma_{yx}$			
	$= n_y \sigma_{xy} + n_y$	σ_{yx} σ_{xy} θ_{y} θ_{x} θ_{y} τ_{x}	

 A_V

σ_{yx}

X

Cauchy's Formula

E Derivation

Contributions to τ_x

$$\mathbf{1} \quad \boldsymbol{\tau}_{x} = w^{(1)}\boldsymbol{\sigma}_{xx} + w^{(2)}\boldsymbol{\sigma}_{yx}$$

$$2 \quad \frac{F_x}{A_n} = \left(\frac{A_x}{A_n}\right) \frac{F_x}{A_x} + \left(\frac{A_y}{A_n}\right) \frac{F_x}{A_y}$$

3 $\tau_x = n_x \sigma_{xx} + n_y \sigma_{yx}$ Similarly

$$4 \quad \tau_y = n_x \sigma_{xy} + n_y \sigma_{yy}$$

Based on a force balance Note that all contributions must act in x-direction

$$n_x = \cos\theta_{nx} = \cos\theta_x$$

 $n_y = \cos\theta_{ny} = \cos\theta_y$

Principal Stresses

III Eigenvectors and eigenvalues

The form of (C) is [A][X]= λ [X], and [σ] is symmetric

Principal Stresses

- 1 $[\sigma][X]=\tau[X]$
- \rightarrow 2 This is an eigenvalue problem (e.g., [A][X]= λ [X])
 - A $[\sigma]$ is a stress tensor (represented as a square matrix)
 - B τ is a scalar
 - C [X] is a vector
 - D [X], $[\sigma][X]$, and $\tau[X]$ all point in the same direction
 - 3 Solving for τ yields the principal stress magnitudes (Most tensile σ_1 , Intermediate σ_2 , least tensile σ_3)
- → 4 Solving for [X] yields the principal stress directions Principal stresses are normal stresses and mutually perpendicular ([σ] is symmetric)

٥ı