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Stresses Control How Rock Fractures
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Stress at a Point

• Stresses refer to balanced 
internal "forces (per unit 
area)". They differ from 
force vectors, which, if 
unbalanced, cause 
accelerations 

• "On -in convention": The 
stress component σij acts on 
the plane normal to the i-
direction and acts in the j-
direction
1 Normal stresses: i=j
2 Shear stresses: i≠j
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Stress at a Point
• Dimensions of stress: 

force/unit area
• Convention for stresses

• Tension is positive
• Compression is negative
• Follows from on-in 

convention
• Consistent with most 

mechanics books
• Counter to most geology 

books
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Stress at a Point
•

• For rotational equilibrium, 
σxy = σyx, σxz = σzx, σyz = σzy; 
stress matrix is symmetric

• In nature, the state of stress 
can (and usually does) vary 
from point to point
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3-D
9 components

2-D
4 components



Stress at a Point

• Analogy with vectors
• The components of a 

vector vary with the 
reference frame, even 
though the vector does not

• For certain reference frame 
orientations, some 
vector/tensor components 
are zero

• The non-zero components 
are meaningful and 
illuminating in a reference 
frame where some 
components are zero
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Principal Stresses
• Have magnitudes and 

orientations
• Principal stresses act on planes 

which feel no shear stress 
• Principal stresses are normal 

stresses
• Principal stresses act on 

perpendicular planes owing to 
symmetry of stress tensor 

• The maximum, intermediate, 
and minimum principal stresses 
are usually designated σ1, σ2, 
and σ3, respectively 

• Designated by a single subscript 
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Principal Stresses

F Principal stresses 
represent the stress state 
most simply

G

H
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3-D
3 components

2-D
2 components

* If σ1 = σ2 = σ3, the state of stress is called isotropic.  This occurs beneath a still body of water.



Application: Vertical Strike-slip Faults
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Application: Dip-slip Faults
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Strain at a point: Basic Concepts

• Normal strain (ε): change 
in relative line length

• Shear strain (γ): change in 
angle between originally 
perpendicular lines

• Volumetric strain (Δ): 
change in relative volume

• Based on rates of change 
of displacement as a 
function of position

• Strains are dimensionless
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Finite strain at a point

• Chain rule relates difference 
in initial positions (dx and 
dy) of neighboring points to 
difference in displacements 
(dx’ and dy’)

• At a point, displacement 
derivatives are constants

• Matrix relating difference in 
displacement [dU] to 
difference in initial position 
[dX] contains constants

• Unit circles (spheres) 
deform to ellipses 
(ellipsoids)
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Infinitesimal strain at a point

• In infinitesimal strain, 
displacement derivatives 
are small relative to 1

• The infinitesimal strain 
matrix contains normal 
strains (on main diagonal) 
and shear strains (off-
diagonal terms)

• The infinitesimal strain 
matrix is symmetric

• Infinitesimal principal 
strains are perpendicular
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Rheology

• The relationship between the flow or 
deformation of a material and the loads 
causing the flow or deformation

• Typically relates stress to strain, or stress to 
strain rate

• In reality, rheology is a complicated functions 
of pressure, temperature, fluid content, etc.

• We generally use simple rheologic models 
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Rheology: Viscous (fluid) behavior
Shear strain rate is proportional to shear stress
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Rheology: Ductile (plastic) behavior
No strain until stress reaches a critical level
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Rheology:  Brittle behavior (fracture)
Deformation is discontinuous
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Rheology: Linear elastic behavior
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http://www.earth.ox.ac.uk/__data/assets/image/0006/3021/seismic_hammer.jpg

https://thegeosphere.pbworks.com/w/page/24663884/Sumatra

[σ] = [C][ε]

• Deformation reverses when stress is relieved
• Stress and infinitesimal strain are linearly related
• Principal strains and principal stresses are parallel in isotropic materials



Mechanics of Fractures and Folds

• Displacement and stresses over a region can be 
obtained by solving boundary value problems

• Requirements
– Body geometry
– Boundary conditions (e.g., stress components or 

displacements acting on a boundary surface)
– Rheology
– Governing equation(s) for equilibrium and compatibility 
– General solution
– Specific solution that honors boundary conditions
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Geologic Problem: Radiating Dikes

Shiprock, New Mexico Aerial view showing radial dikes

10/16/18 GG611 21

Both images from
http://en.wikipedia.org/wiki/Shiprock#Images



Displacement Field Around a 
Pressurized Hole in an Elastic Plate

Geometry and boundary 
conditions Displacement field
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For u0 > 0



Displacement and Stress Fields Around 
a Pressurized Hole

Displacement field Stress field
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σ1σ2



Dikes Open in Direction of Most Tensile Stress,
Propagate in Plane Normal to Most Tensile Stress
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Most tensile stress



Modeled vs. Measured Displacement Fields 
Around a Fault

Model for Frictionless, 2D Fault in an Elastic Plate
Model Displacement field GPS Displacements, Landers 1992
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Co-seismic displacement field due to 
the 1992, Landers EQ

Co-seismic deformation can be 
modeled using elastic dislocation 
theory 

(based on Massonnet et al., 1993)

Modeled vs. Measured Co-seismic 
Displacement, Landers Earthquake 
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Predicted “Coulomb” Stress Changes Caused by 
1992 Landers Earthquake, California

• From King et al., 1994 
(Fig. 11)

• Coulomb stress change 
caused by the Landers 
rupture. The left-lateral 
ML=6.5 Big Bear rupture 
occurred along dotted 
line 3 hr 26 min after the 
Landers main shock. The 
Coulomb stress increase 
at the future Big Bear 
epicenter is 2.2-2.9 bars.
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Stress Fields Around a Frictionless, 2D Model 
Fault in an Elastic Plate vs. Observations

Model stress field: Most tensile 
stress & stress trajectories

Tail cracks at end of left-lateral 
strike-slip fault 
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Note location and orientation of “tail cracks”
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Folding Along a Fault

From Grasemann et al., 2005
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Folding Along a Fault, Koae Fault System

From Martel and Langley, 2006
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“Fault” in Foam Rubber, Before Slip
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“Fault” in Foam Rubber, After Slip
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Other Mechanisms for Folding

Flexure over intrusions From lateral shortening
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http://pangea.stanford.edu/~annegger/images/colorado%20plateau/laccolith_sketch.jpg From Willis, 1894

GK Gilbert’s first sketch of a laccolith Experimental device of Bailey Willis



Appendix: Eigenvectors, eigenvalues
and principal stresses
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Traction Vector on a Plane 
I Stress vector (traction)

•

• Traction vectors can be 
added as vectors

• A traction vector can be 
resolved into normal (τn) 
and shear (τs) components 
• A normal traction (τn) 

acts perpendicular to a 
plane

• A shear traction (τs) acts 
parallel to a plane

• Local reference frame
• n-axis is normal to plane
• s-axis is parallel to plane
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Cauchy’s Formula
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• Transforms stress state at a point to the traction 
acting on a plane with normal n

• Transforms normal vector n to the traction vector τ
• τj =     ni σij

• Expansion (2D)
• τx = nxσxx + nyσyx
• τy = nyσxy + nyσyy

Traction 
component 
that acts in

the j-direction

Stress component that acts 
on a plane with its normal in the      

j-direction, and that acts in
the j-direction

Dimensionless
weighting factor 

(cosine between the 
n- and i- directions;)



Cauchy’s Formula 

E Derivation 

Contributions to τx

1

2

3

Similarly

4
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τ x = w
1( )σ xx +w

2( )σ yx

τ x = nxσ xx + nyσ yx

Fx
An

= Ax
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⎛
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⎞
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Based on a force balance

Note that all contributions must act in x-direction

τ y = nxσ xy + nyσ yy

nx= cosθnx= cosθx

ny = cosθny= cosθy



Principal Stresses
III Eigenvectors and eigenvalues

A

B

C

The form of (C ) is [A][X]=λ[X], and [σ] is symmetric
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Principal Stresses
1 [σ][X]=τ[X]
2 This is an eigenvalue problem (e.g., [A][X]=λ[X])

A [σ] is a stress tensor (represented as a square matrix)
B τ is a scalar
C [X] is a vector
D [X], [σ][X], and τ[X] all point in the same direction 

3 Solving for τ yields the principal stress magnitudes
(Most tensile σ1, Intermediate σ2, least tensile σ3)

4 Solving for [X] yields the principal stress directions
Principal stresses are normal stresses and 
mutually perpendicular ([σ] is symmetric)
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