GG611

Structural Geology Section Steve Martel POST 805
smartel@hawaii.edu
Lecture 4
Rheology and Mechanics

Stresses Control How Rock Fractures

http://hvo.wr.usgs.gov/kilauea/update/images.html

Outline

I. Stress at a point
II. Strain at a point
III. Rheology
IV. Mechanics of fractures and folds
V. Appendix: Eigenvectors, eigenvalues, and principal stresses

Stress at a Point

- Stresses refer to balanced internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
- "On -in convention": The stress component $\sigma_{i j}$ acts on the plane normal to the idirection and acts in the j direction
1 Normal stresses: $i=j$
2 Shear stresses: $i \neq j$

Normal stresses

Shear stresses

Stress at a Point

- Dimensions of stress: force/unit area
- Convention for stresses
- Tension is positive
- Compression is negative
- Follows from on-in convention
- Consistent with most mechanics books
- Counter to most geology books

Normal stresses

Shear stresses

Stress at a Point

- $\sigma_{i j}=\left[\begin{array}{cc}\sigma_{x x} & \sigma_{x y} \\ \sigma_{y x} & \sigma_{y y}\end{array}\right]$ 4 components

$$
\sigma_{i j}=\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right] \text { 9 components }
$$

- For rotational equilibrium, $\sigma_{x y}=\sigma_{y x}, \sigma_{x z}=\sigma_{z x}, \sigma_{y z}=\sigma_{z y} ;$ stress matrix is symmetric
- In nature, the state of stress can (and usually does) vary from point to point

Normal stresses

Shear stresses

Stress at a Point

- Analogy with vectors
- The components of a vector vary with the reference frame, even though the vector does not
- For certain reference frame orientations, some vector/tensor components are zero
- The non-zero components are meaningful and illuminating in a reference frame where some components are zero

Principal Stresses

- Have magnitudes and orientations
- Principal stresses act on planes which feel no shear stress
- Principal stresses are normal stresses
- Principal stresses act on perpendicular planes owing to symmetry of stress tensor
- The maximum, intermediate, and minimum principal stresses are usually designated σ_{1}, σ_{2}, and σ_{3}, respectively
- Designated by a single subscript

Principal Stresses

F Principal stresses

represent the stress state most simply

$$
\left.\left.\begin{array}{ll}
\mathrm{G} & \sigma_{i j}=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
\end{array} \begin{array}{c}
\text { 2-D } \\
\text { 2 components }
\end{array}\right] \begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \quad \text { 3-D components } \quad \sigma_{i j}=\left[\begin{array}{l}
\text { 3-D }
\end{array}\right.
$$

Principal stresses

* If $\sigma_{1}=\sigma_{2}=\sigma_{3}$, the state of stress is called isotropic. This occurs beneath a still body of water.

Application: Vertical Strike-slip Faults

Application: Dip-slip Faults

Assume one principal stress is vertical, two principal stresses are horizontal, and the horizontal principal stresses are parallel and normal to fault strike.

The $x^{\prime \prime}$ axis is parallel to fault strike (at you) The y "axis is normal to the fault The $z^{\prime \prime}$ azis points down-dip If $\sigma_{y "} z^{\prime \prime}>0$, Inormal faulting
If $\sigma_{y^{\prime \prime}} z^{\prime \prime}<0$, reverse faulting
Draw the arrows showing how the faults would slip,
and determine whether the slip is normal or reverse

Strain at a point: Basic Concepts

- Normal strain (ε): change in relative line length
- Shear strain (γ) : change in angle between originally perpendicular lines
- Volumetric strain (Δ): change in relative volume
- Based on rates of change of displacement as a function of position
- Strains are dimensionless

Finite strain at a point

- Chain rule relates difference $d u_{x}=\frac{\partial u_{x}}{\partial x} d x+\frac{\partial u_{x}}{\partial y} d y$
in initial positions (dx and dy) of neighboring points to difference in displacements $d u_{y}=\frac{\partial u_{y}}{\partial x} d x+\frac{\partial u_{y}}{\partial y} d y$ ($d x^{\prime}$ and $d y^{\prime}$)

- At a point, displacement derivatives are constants
- Matrix relating difference in displacement [dU] to difference in initial position [dX] contains constants
- Unit circles (spheres) deform to ellipses (ellipsoids)

$$
\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial u_{x}}{\partial x} & \frac{\partial u_{x}}{\partial y} \\
\frac{\partial u_{v}}{\partial x} & \frac{\partial u_{y}}{\partial y}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y
\end{array}\right] \Rightarrow[d U]=\left[J_{u}\right][d X]
$$

Infinitesimal strain at a point

- In infinitesimal strain, displacement derivatives are small relative to 1
- The infinitesimal strain matrix contains normal strains (on main diagonal) and shear strains (offdiagonal terms)
- The infinitesimal strain matrix is symmetric
- Infinitesimal principal strains are perpendicular

$$
\varepsilon_{i j}=\left[\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right]
$$

Rheology

- The relationship between the flow or deformation of a material and the loads causing the flow or deformation
- Typically relates stress to strain, or stress to strain rate
- In reality, rheology is a complicated functions of pressure, temperature, fluid content, etc.
- We generally use simple rheologic models

Rheology: Viscous (fluid) behavior

 Shear strain rate is proportional to shear stresshttp://manoa.hawaii.edu/graduate/content/slide-lava

Rheology: Ductile (plastic) behavior No strain until stress reaches a critical level

http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg http://hvo.wr.usgs.gov/kilauea/update/images.html

Rheology: Brittle behavior (fracture) Deformation is discontinuous

Rheology: Linear elastic behavior

- Deformation reverses when stress is relieved
- Stress and infinitesimal strain are linearly related
- Principal strains and principal stresses are parallel in isotropic materials

$$
[\sigma]=[C][\varepsilon]
$$

https://thegeosphere.pbworks.com/w/page/24663884/Sumatra http://www.earth.ox.ac.uk/__data/assets/image/0006/3021/seismic_hammer.jpg

Mechanics of Fractures and Folds

- Displacement and stresses over a region can be obtained by solving boundary value problems
- Requirements
- Body geometry
- Boundary conditions (e.g., stress components or displacements acting on a boundary surface)
- Rheology
- Governing equation(s) for equilibrium and compatibility
- General solution
- Specific solution that honors boundary conditions

Geologic Problem: Radiating Dikes

Shiprock, New Mexico

Both images from
http://en.wikipedia.org/wiki/Shiprock\#Images

Aerial view showing radial dikes

Displacement Field Around a

Pressurized Hole in an Elastic Plate

Geometry and boundary conditions

Displacement field

$$
\begin{aligned}
& \text { For } u_{0}>0 \\
& \left(u_{r} / u_{0}\right)=(a / r)
\end{aligned}
$$

Displacement and Stress Fields Around a Pressurized Hole

Displacement field

For $u_{0}>0:\left(u_{r} / u_{0}\right)=(a / r)$

Stress field

For $P<0:\left(\sigma_{1} / P\right)=-(a / r)^{2} \quad\left(\sigma_{2} / P\right)=(a / r)^{2}$

Dikes Open in Direction of Most Tensile Stress, Propagate in Plane Normal to Most Tensile Stress

http://hvo.wr.usgs.gov/kilauea/update/images.html

Modeled vs. Measured Displacement Fields Around a Fault
Model for Frictionless, 2D Fault in an Elastic Plate

Model Displacement field

GPS Displacements, Landers 1992

Modeled vs. Measured Co-seismic Displacement, Landers Earthquake

Co-seismic deformation can be modeled using elastic dislocation theory

(based on Massonnet et al., 1993)

Predicted "Coulomb" Stress Changes Caused by 1992 Landers Earthquake, California

- From King et al., 1994 (Fig. 11)
- Coulomb stress change caused by the Landers rupture. The left-lateral ML=6.5 Big Bear rupture occurred along dotted line 3 hr 26 min after the Landers main shock. The Coulomb stress increase at the future Big Bear epicenter is 2.2-2.9 bars.

Stress Fields Around a Frictionless, 2D Model Fault in an Elastic Plate vs. Observations

Model stress field: Most tensile stress \& stress trajectories

Tail cracks at end of left-lateral strike-slip fault

Note location and orientation of "tail cracks"

Folding Along a Fault

From Grasemann et al., 2005

Folding Along a Fault, Koae Fault System

From Martel and Langley, 2006

"Fault" in Foam Rubber, Before Slip

"Fault" in Foam Rubber, After Slip

Other Mechanisms for Folding

Flexure over intrusions

GK Gilbert's first sketch of a laccolith

From lateral shortening

Experimental device of Bailey Willis

Appendix: Eigenvectors, eigenvalues and principal stresses

Traction Vector on a Plane

1 Stress vecțor (traction)

- $\tau=\lim _{A \rightarrow 0} F / A$
- Traction vectors can be added as vectors
- A traction vector can be resolved into normal (τ_{n}) and shear $\left(\tau_{s}\right)$ components
- A normal traction (τ_{n}) acts perpendicular to a plane
- A shear traction (τ_{s}) acts parallel to a plane
- Local reference frame
- n -axis is normal to plane
- s-axis is parallel to plane

Cauchy's Formula

- Transforms stress state at a point to the traction acting on a plane with normal \vec{n}
- Transforms normal vector \vec{n} to the traction vector $\vec{\tau}$

$$
\begin{aligned}
& \mathbf{\tau}_{\mathbf{j}}= \\
& \text { Traction } \\
& \text { component } \\
& \text { that acts in } \\
& \text { the } j \text {-direction }
\end{aligned}
$$

- Expansion (2D)
- $\tau_{x}=n_{x} \sigma_{x x}+n_{y} \sigma_{y x}$
- $\tau_{y}=n_{y} \sigma_{x y}+n_{y} \sigma_{y y}$

Stress component that acts on a plane with its normal in the
j-direction, and that acts in the j -direction

Cauchy's Formula

E Derivation

Contributions to τ_{x} Based on a force balance
$1 \tau_{x}=w^{(1)} \sigma_{x x}+w^{(2)} \sigma_{y x}$
$2 \frac{F_{x}}{A_{n}}=\left(\frac{A_{x}}{A_{n}}\right) \frac{F_{x}}{A_{x}}+\left(\frac{A_{y}}{A_{n}}\right) \frac{F_{x}}{A_{y}}$
$3 \tau_{x}=n_{x} \sigma_{x x}+n_{y} \sigma_{y x}$
Note that all contributions must act in x-direction

Similarly
$4 \tau_{y}=n_{x} \sigma_{x y}+n_{y} \sigma_{y y}$

$$
\begin{aligned}
& n_{x}=\cos \theta_{n x}=\cos \theta_{x} \\
& n_{y}=\cos \theta_{n y}=\cos \theta_{y}
\end{aligned}
$$

Principal Stresses

III Eigenvectors and eigenvalues

The form of (C) is $[A][X]=\lambda[X]$, and $[\sigma]$ is symmetric

Principal Stresses

$1[\sigma][\mathrm{X}]=\tau[\mathrm{X}]$
$\rightarrow 2$ This is an eigenvalue problem (e.g., $[A][X]=\lambda[X]$)
A $[\sigma]$ is a stress tensor (represented as a square matrix)
$B \quad \tau$ is a scalar
C $[X]$ is a vector
D $[X],[\sigma][X]$, and $\tau[X]$ all point in the same direction
3 Solving for τ yields the principal stress magnitudes
(Most tensile σ_{1}, Intermediate σ_{2}, least tensile σ_{3})
$\rightarrow 4$ Solving for $[\mathrm{X}]$ yields the principal stress directions Principal stresses are normal stresses and mutually perpendicular ([$\sigma]$ is symmetric)

