SUBSIDENCE IN THREE DIMENSIONS:

| Main Topics

CENTER OF DILATION (MOGI SOURCE) (43)

A Center of dilation (contraction) in a half-space

B Case histories

C References
* Patterned after Segall, 2010
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Il Center of dilation in half-space
(Mogi source)

A Construction of solution by
sources and images

Half-space: z< 0

Source center in a full space,
by itself, has local radial
displacements and stress
singularity, but induces
stresses along midplane
(dashed) between source and
image

Image center has strength of
source, but is located above
midplane

Source and image together
double ¢, along midplane;
annul o,

Additional image contribution
annuls c,, along midplane
between source and image

Traction-free surface
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B Sub-surface displacement field (z < 0)
for centers of contraction and dilation

Displacement field for a center of contraction in a half-space Displacement field for a center of dilation in a half-space
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1 Displacements (and hence strains) near center similar to those
for a center in an infinite body
2 Displacements at the surface radiate towards or from center at
depth (just like for a center in an infinite body) but are larger by
a factor of 4(1-v) [Davies, 2003]
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C Displacement field at the surface (z = 0)
for a center of dilation

Center of contraction Center of contraction
Infinite linear elastic body Linear elastic half -space
z} ¢
i J/ Displacements at the surface of half-space
radiate towards or from center at depth
Dlsp\acemen(sare radial  Purely radial d\splacements (just like for a center in an infinite body)
(towards center) (towards center) but are larger by a factor of 4(1-v) [Davies,
everywhere, along surface
including near center and near center 2003]
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D Displacements at the surface (z = 0) for
centers of contraction and dilation

Displacements at surface above center of contraction

, Displacements at surface above center of dilation
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r/d <0.71 Contraction Extension
r/d>0.71 Extension Contraction
Vertical displacement magnitude decrease by 50% at r,, = 0.77d
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E Displacements at the surface (z = 0) for

centers of contraction and dilation

Displacements at surface above center of contraction

, Displacements at surface above center of dilation
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Vertical displacement magnitude decreases by 50% at r,;, = 0.77d
So,d=r,,/0.77
The maximum radial displacement occurs at r* = 0.71d
So, alternatively, d = r* /0.71
From d and ground displacements at different positions, AV can be calculated
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Il Case histories

1 Wilmington oil field, Long Beach, CA
2 Darwin volcano, Galapagos Islands
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1 Surface displacements,
Wilmington oil field, Long Beach, CA
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A Vertical extension above producing horizons

II-15-49 3-16-50 4-11-57 3-26-58 5-9-60 CUMULATIVE COM~
foot foot foot foot foot PACTION, INFEET
5 +05| 405 405 4.0 405 +05 +1.0f [0 1945-1960 20
q- &
500
b -

1000

g

s
*—U‘:I‘Lr-«nn‘_/"ﬂ_“l futen P A
hn Men (v an et 10 o

INFEET

- 2000

_,;——nﬂ-—\-m—ﬂ—u-"“\-r"'\-'”._ﬂ

DEPTH
-
-

2500 [ == |

] RANGER ]TAR{

3000

UPPER
TERMINAL

3500

5/6/15 GG454 9

B Normal strains and displacements in a vertical

plane through a center of contraction ¥

| Vertical extension predicted above producing horizons | *

Displacement field for a center of dilation in full space

8ZZ o)

Displacements not shown within
dashed circle for diagrammatic reasons

5/6/15 GG454 10

5/6/15



5/6/15

C Surface displacements from the
Wilmington oil field, Long Beach, CA
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D Wilmington oil field data
and model predictions

Displacements at surface above center of contraction

2r¥* =23 km r*=1.15km
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E Producing horizons centered at ~ 1km depth
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F Wilmington oil field data
and model predictions for volume loss
Displacements at surface above center of contraction
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G Produced volume at Wilmington oil field
vs. model predictions

From November 1936 to July 1, 1969 the oil field produced approximately
2.0 x 108 cubic meters (Mayuga and Allen)
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Fluid volume produced is ~3 times the modeled solid volume loss

Possible parallel: in the San Joaquin Valley, the pumped volume
is ~3 times the subsidence volume
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2 Darwin volcano: ground surface
displacements vs. model predictions

(b) Predicted interferogram based on a center of dilation located at a depth of 3 km
beneath the star. Each color cycle represents 5 cm of displacement along the line of
sight. From Amelung et al., 2000.
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