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SUBSIDENCE	MECHANICS:	HEAT	FLOW	ANALOG	(38)	

I	 	Main	Topics	
A	MoCvaCon:	Why	invesCgate	heat	flow?		

B	Development	of	1-D	heat	flow	equaCon	as	
analog	for	consolidaCon	

C	Finite-difference	interpretaCon	of	heat	flow	
equaCon	

D	Dimensional	analysis	
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II 	MoCvaCon	

A	Heat	flow	equaCon	has	the	same	form	as	the	
consolidaCon	equaCon	but	is	easier	to	grasp	

B	Diffusion	of	heat	analogous	to	diffusion	of	
excess	pore	pressure	

C	Many	analyCc	soluCons	for	heat	flow	(e.g.,	
Carslaw	and	Jaeger,	1984)	

D	Many	analogous	equaCons	of	great	use	
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E	Flow	analogs	
Flowing	quan,ty	 Incompressible	Fluid	 Heat	 Chemical	Species	

Conserved	quanCty	 Mass	 Heat	Energy	 Molecules	

1-D	flux	law	 Darcy’s	law	 Fourier’s	law	 Fick’s	law	

Flux	term	 q=	volume	flux	density	
m3/(m2•sec)	

q=	heat	flux	density	
joules/(m2•sec)	

J	=	diffusion	flux	
moles/(m2•sec)	

Coefficient	 k	=	hydraulic	conducCvity	
m/sec	

k	=	thermal	conducCvity	
Joules/(m•°K•sec)	

D	=	diffusivity	
m2/sec	

PotenCal	term	 H	=	head	(m)	 T	=	temperature	(°K)	 c	=	concentraCon	(moles/m3)	

1-D	diffusion	law	

Coefficient	 α	=	hydraulic	diffusivity	
m2/sec		

α	=	thermal	diffusivity	
m2/sec		

D	=	diffusivity	
m2/sec		

Steady	state	flow	
(Term	on	leh	side	of	
diffusion	law	=	0)	
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q = −k ∂H
∂ x

q = −k ∂T
∂ x

J = −D ∂c
∂ x

∂H
∂ t

=α ∂ 2H
∂ x2

∂T
∂ t

=α ∂ 2T
∂ x2

∂c
∂ t

= D ∂ 2c
∂ x2

∇2H = 0 ∇2T = 0 ∇2c = 0

III	Development	of	1-D	heat	flow	
equaCon	as	analog	for	consolidaCon		

A 	Isotropic,	uniform	material	
B 	DefiniCon	of	terms	

1 	U	=	heat	energy	(joules)	
2 	x	=	posiCon		(meters)	
2 	t	=	Cme	(seconds)	
3 	q	=	heat	flux	(joules/(meter2	

sec)	
a 	Rate	of	heat	energy	

transfer	per	unit	area	per	
unit	Cme			

b 	Heat	flux	can	vary	with	
Cme	and	posiCon,	so	q	=	
q(x,t)	

4  T	=	temperature		(°)	
	Temperature	can	vary	with	
posiCon	and	Cme,	so	T	=	T(x,t)	
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C 	Fourier's	Law	of	Heat	ConducCon	(1-D)	

1 	Heat	flow	(q)	scales	with	the	
temperature	gradient	(∂T/∂x)	

2  k	=	coefficient	of	thermal	
conducCvity	

a 	Dimensions:	Joules	sec-1	m-1	K-1		

b 	k	assumed	to	be	constant	
3 	Dimension	check		
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q = −k ∂T
∂x

Joules
m2 sec

= Joules
msec°K

°K
m

C 	Fourier's	Law	of	Heat	ConducCon	(1-D)	

4  The	minus	sign	
a 	For	heat	to	flow	from	x1	to	x2	,	

where	x1<x2,	T(x1)	>	T(x2).			
b 	PosiCve	heat	flow	corresponds	

to	a	drop	in	temperature	
across	the	plate,	requiring	-k	
to	be	negaCve	

5 	ParCal	derivaCve	used	because	T	
is	a	funcCon	of	x	and	t. 		

6  Finite	difference	approximaCon: 			
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q = −k ∂T
∂x

q = −k ΔT
Δx
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D			Fluid	flow	analog	(slow	laminar	flow)	

1 	Volumetric	flux	(q)	scales	with	
the	head	gradient	(∂H/∂x)	

2  k	=	hydraulic	conducCvity	
a 	Dimensions:	m/sec	
b 	k	assumed	to	be	constant	
c 	k	depends	on	the	intrinsic	

permeability	of	the	material,	
the	degree	of	saturaCon,	and	
on	the	density	and	viscosity	of	
the	fluid	

3 	Dimension	check			
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q = −k ∂H
∂x

m3

m2 sec
= m
sec

m
m

E		Heat	Flow	EquaCon	
(ConservaCon	of	energy)	

•  Change	in	heat	energy	=	heat	in	–	heat	out	
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ΔUheat = ΔT( ) mass( ) specificheat( )
ΔUheat = A( ) Δt( ) q x = x1( )− q x = x2( )⎡⎣ ⎤⎦
ΔT( ) mass( ) specificheat( ) = A( ) Δt( ) −Δq[ ]

ΔT( ) ρAΔx( ) c( ) = A( ) Δt( ) −∂q
∂x

Δx⎡
⎣⎢

⎤
⎦⎥

ΔT( ) ρ( ) c( )
Δt( ) =

−∂ −k ∂T
∂x

⎛
⎝⎜

⎞
⎠⎟

∂x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ΔT( ) ρ( ) c( )
Δt( )k = ∂2T

∂x2
∂T
∂t

=α ∂2T
∂x2

α	=	thermal	diffusivity	
			=	k/ρc	
α	has	dimensions	of		
					length2/Cme	

q	stated	using	
Fourier’s	Law	
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F		Heat	Flow	EquaCon	

•  1-D	form:		 	 	 							parabolic	differenCal	equaCon	

•  2-D	form:		

•  3-D	form:			
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K ∂T
∂t

= ∂2T
∂x2

K ∂T
∂t

= ∂2T
∂x2

+ ∂2T
∂y2

K ∂T
∂t

= ∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

G	Laplace	equaCon	

•  Applies	to	steady	state	
distribuCon	of	
temperature	

•  Temperature	does	not	
change	as	a	funcCon	of	
Cme	

•  		

•  1-D:	

•  2-D:	

•  3-D:		

•  General:		
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∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

= 0

∂T
∂t

= 0

∂2T
∂x2

+ ∂2T
∂y2

= 0

∂2T
∂x2

= 0

∇2T = 0

Curvature T1−D( ) =
d 2T
dx2

1+ dT
dx

⎛
⎝⎜

⎞
⎠⎟
2
3/2 , so

d 2T
dx2

= 0 meanscurvature T1−D( ) = 0
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H	RelaConship	between	1-D	
temperature	profile	and	heat	change	
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• 	To	a	good	approximaCon,	the	rate	of	temperature	change	with	
Cme	scales	with	the	curvature	of	the	temperature	profile	

• 	If	the	1-D	temperature	profile	isn't	curved,	then	no	change	in	
heat	energy	occurs	in	the	slab	(i.e.,	steady	state	exists)	

∂T
∂t

=α ∂2T
∂x2

I		Fluid	Flow	EquaCon	
(ConservaCon	of	mass	for	incompressible	fluid)	

•  Change	in	fluid	mass	=	mass	in	–	mass	out	

4/16/18	 GG454	 12	

Δmass = Δvolume
ΔH

⎛
⎝⎜

⎞
⎠⎟ density( ) ΔH( )

Δmass = A( ) Δt( ) density( ) q x = x1( )− q x = x2( )⎡⎣ ⎤⎦
Δvolume
ΔH

⎛
⎝⎜

⎞
⎠⎟ density( ) ΔH( ) = A( ) Δt( ) density( ) −Δq[ ]

Δvolume
AΔH

⎛
⎝⎜

⎞
⎠⎟ ΔH( ) = Δt( ) −∂q

∂x
Δx⎡

⎣⎢
⎤
⎦⎥

S ΔH( )
Δt( ) =

−∂ −k ∂H
∂x

⎛
⎝⎜

⎞
⎠⎟

∂x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

S ΔH
Δt

= k ∂
2H
∂x2

∂H
∂t

=α ∂2H
∂x2

α	=	hydraulic	diffusivity	
=	k/S	

S	=	storaCvity	
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J	RelaConship	between	head	profile	
and	fluid	volume	change	
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∂H
∂t

=α ∂2H
∂x2

• 	To	a	good	approximaCon,	the	rate	of	fluid	content	change	with	
Cme	scales	with	the	curvature	of	the	head	profile	

• 	If	the	head	profile	isn't	curved,	then	no	change	in	fluid	content	
occurs	in	the	slab	

IV		Finite	difference	interpretaCon	of	
heat	flow	equaCon	

•  					
•  The	value	of	T	(here	T	=	
temperature)	at	a	given	
point	is	the	average	of	
the	values	at	the	
nearest	neighboring	
points	on	a	square	grid	
(see	notes	on	wave	eqn)	
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∇2T = 0

T0 =
T1 +T2 +T3 +T4

4
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V		Dimensional	analysis	

A	QuesCon:	How	does	the	thickness	H	of	a	plate	
control	the	Cme	the	plate	takes	to	cool?	

B	Consider	the	dimensions	of	the	terms	in	the	
heat	flow	equaCon	and	the	plate	thickness	H	
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tc[ ] = coolingtime
T[ ] = !K

α[ ] = length( )2 time( )−1

H[ ] = x[ ] = length

∂T
∂t

=α ∂2T
∂x2

V		Dimensional	analysis	

C 	Now	consider	the	cooling	Cme	at	a	point	in	the	plate	

D 	The	equaCon	for	the	cooling	Cme	tc	must	be	dimensionally	
consistent,	and	can	only	depend	on	the	relevant	factors.		So	

	where	C	is	an	unknown	dimensionless	constant	

Hence	
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∂T
∂t

=α ∂2T
∂x2

 

tc[ ] = time T[ ] = !K

α[ ] = length( )2 time( )−1 H[ ] = length
tc = CT

aα bH c ,

 

tc[ ] = T[ ]a α[ ]b H[ ]c

time( )1 = !K( )a length2

time
⎛
⎝⎜

⎞
⎠⎟

b

length( )c

time( )1 = !K( )a length( )2b+c time( )−b

E			By	inspecCon	

So	
a = 0;b = −1;c = 2

tc = Cα
−1H 2
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V		Dimensional	analysis	

F 	Meaning	of	soluCon	
1  The	Cme	for	cooling	the	plate		to	some	fracCon	of	its	

iniCal	temperature	is	proporConal	to	H2	
2  Doubling	the	plate	thickness	quadruples	the	cooling	

Cme	
3  If											,	then	

	This	can	be	used	for	rough	esCmates	of	the	cooling	
Cme		
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∂T
∂t

=α ∂2T
∂x2

tc = Cα
−1H 2

tc ≈
H 2

α
C ≈1
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