SUBSIDENCE MECHANICS: HEAT FLOW ANALOG (38)

| Main Topics
A Motivation: Why investigate heat flow?

B Development of 1-D heat flow equation as
analog for consolidation

C Finite-difference interpretation of heat flow
equation

D Dimensional analysis

Il Motivation

A Heat flow equation has the same form as the
consolidation equation but is easier to grasp

B Diffusion of heat analogous to diffusion of
excess pore pressure

C Many analytic solutions for heat flow (e.g.,
Carslaw and Jaeger, 1984)

D Many analogous equations of great use
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E Flow analogs
s | e | st | Gl

Conserved quantity Mass Heat Energy Molecules
1-D flux law Darcy’s law Fourier’s law Fick’s law
JH oT dc
g=—kZ= q=—kZ J=-DZ
ox ox Jx
Flux term g= volume flux density g= heat flux density J = diffusion flux
m3/(m2esec) joules/(m?2esec) moles/(m?2esec)
Coefficient k = hydraulic conductivity k = thermal conductivity D = diffusivity
m/sec Joules/(me°Kesec) m2/sec
Potential term H = head (m) T = temperature (°K) ¢ = concentration (moles/m3)
1-D diffusion law oH PH oT T dc d%c
— = — = —=D—
ot ox* Jat dx’ ot ax*
Coefficient o = hydraulic diffusivity a = thermal diffusivity D = diffusivity
m?/sec m?/sec m?/sec
Steady state flow 2 2 P
(Term on left side of V'H=0 VT=0 Vie=0

diffusion law = 0)
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lIl Development of 1-D

heat flow

equation as analog for consolidation

A Isotropic, uniform material
B Definition of terms
1 U = heat energy (joules)
2 x=position (meters)
2 t=time (seconds)
3 g = heat flux (joules/(meter?
sec)

a Rate of heat energy
transfer per unit area per

1-D Heat Flow
T = Temperature
Ti>T,
q = -k (8T/ax)
q = heat flux

Ty
At = increment of time

X Area A

unit time
b Heat flux can vary with
time and position, so q =
alx.t)
4 T=temperature (°)

Temperature can vary with
position and time, so T = T(x,t)
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X1 X2 X
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C Fourier's Law of Heat Conduction (1-D)

oT
q=—R—

1 Heat flow (q) scales with the
temperature gradient (0T/0x)

2 k = coefficient of thermal
conductivity

a Dimensions: Joules secl m1K1?

b kassumed to be constant
3 Dimension check

Joules  Joules °K

m*sec  msec®K m
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1-D Heat Flow
T = Temperature
Ti>Tp
q =k (8T/3x)
q
q = heat flux
T To
At = increment of time
& Area A
X1 %o X

C Fourier's Law of Heat Conduction (1-D)

q=—ka—T

4 The minus sign

a For heat to flow from x; to x, ,
where x;<x,, T(x;) > T(x,).

b Positive heat flow corresponds
to a drop in temperature
across the plate, requiring -k
to be negative

5 Partial derivative used because T

is a function of x and t.

6 Finite difference approximation:

=—k—
i Ax
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1-D Heat Flow
T = Temperature
Ti>To
q = -k (dT/3x)
q = heat flux

T
At = increment of time

& Area A

Xq X2 X
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D Fluid flow analog (slow laminar flow)

1 Volumetric flux (q) scales with
the head gradient (dH/dx) 1-D flid flow

2 k= hydraulic conductivity
a Dimensions: m/sec
b kassumed to be constant

¢ kdepends on the intrinsic
permeability of the material, x Area A
the degree of saturation, and X1 %
on the density and viscosity of
the fluid

3 Dimension check

H = head
Hy>H,

Q = volumetric flow rate
Q =k (8HBxX) A

At = time increment

m3 nm m

m2 S€C  seCcm
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E Heat Flow Equation

(Conservation of energy)
* Change in heat energy = heat in — heat out

Heat Flow

AUheaI =(AT)(mass)(speciﬁcheat) 1-D heat flow / $=T_?mperature
1> 12
AU, =(A)(At)[q(x:x])—q(x=x2)] q =k (8T/Bx)
(AT)(mass)(specificheat) = (A)(At)[—Aq] : > q = heat flux
1
(AT)(pAAX)(C) _ (A)(AZ) _—anx} At = increment of time
S— - X = Ax Area A
_a —k al \ X1 X2 X
(AT)(p)(c) _ dx ) | ¥ qstated using
(At) - ox Fourier’s Law
(AT)(p)(c) ) 2T B_T _ PT a:lz;\:crmal diffusivity
(At)k ox’ ot ox? a has dimensions of
length?/time
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F Heat Flow Equation

2
e 1-D form: KE;_T:E)_Z parabolic differential equation
t  Ox
oT o°T 0T
e 2-Dform:Kk—-=
orm ot 8x2+8y2
2 2 2
. 3-Dform:Ka—T=aT orT o7

ot ox’ " dy’ i 9z
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G Laplace equation

* Applies to steady state * 1-D: azf =0
distribution of 0x
temperature .« 2D ’T o0'T ~0o

* Temperature does not ox> 9y’
c.hange as a function of . 3.0: o*T .\ O*T .\ *T o
time Y ayz 07 =

. 9T _, * General: VT=0

ot
d’T
d’T

Curvature(Tl,D) = 5+ 50 — =0 means curvature(TlfD) =0

2 dx

s
able
N~——
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H Relationship between 1-D

temperature profile and heat change

a_T_aazT
o ox’
e To a good approximation, the rate of temperature change with
time scales with the curvature of the temperature profile
e [f the 1-D temperature profile isn't curved, then no change in

heat energy occurs in the slab (i.e., steady state exists)

Heat in = Heat out Heat in < Heat out Heat in > Heat out
[} Temperature profile o Temperalure profile [ Temperature profile
El is not curved 5 is concave-down 5 is concave-up
-Temperature = -Temperature -Temperature < -Temperature -Temperature > -Temperature
gradient gradient gradient gradient gradient gradient
going in going out going in going out going in going out
No heat is stored in the box Heat is lost from the box Heat is gained in the box
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| Fluid Flow Equation
(Conservation of mass for incompressible fluid)
* Change in fluid mass = mass in — mass out
Avolume .
onass = S22 densiy) 1)
Amass = (A)(At)(density)[q(x =X, ) = q(x =X, )] / :;’ﬁjd
Avolume . .
( j(denstty)(AH)= (A)(At)(denSlly)[—Aq] 1 Q = volumetric flow rate
H, Q= -k (8HBX) A
Avolume - aq At = time increment
AH )= (At)| —Ax
( AAH j( ) ( )l: ox :| A Area A
oH X1 X2 x
A2
S (AH) - Jx S = storativity
(A1) dx
AH 3 H - |oH *H a = hydraulic diffusivity
S——=k—5 TS T3 2 | =k
At ox’ ot 0x
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J Relationship between head profile

and fluid volume change

OH _  OH
o ox’

¢ To a good approximation, the rate of fluid content change with
time scales with the curvature of the head profile

e [f the head profile isn't curved, then no change in fluid content
occurs in the slab

Fluid in = Fluid out Fluid in < Fluid out Fluid in > Fluid out
Head profile Head profile Head profile
is not curved is concave-down is concave-up
o e e
— 3 8 —_— —» 8 3 —_—
2 2 > | >
-Head gradient = -Head gradient -Head gradient < -Head gradient --Head gradient > --Head gradient
going in going out going in going out going in going out
No fluid is stored in the box Fluid is lost from the box Fluid is gained in the box
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IV Finite difference interpretation of
heat flow equation

« VT =0 4

* Thevalue of T (here T = 42
temperature) at a given Te
point is the average of ¢
the values at the T3 IT7 o [Ts [Ty
nearest neighboring f T i T A X
points on a square grid Tg Ay
(see notes on wave eqn) T

r T+ +T+T, 014 _Y
0~ 4 A
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V Dimensional analysis
a_T:aazT
ot ox’
A Question: How does the thickness H of a plate
control the time the plate takes to cool?

B Consider the dimensions of the terms in the
heat flow equation and the plate thickness H

[tf] = coolingtime

[T]="k

[a] (length)’ (time)"

[H]=[x]=length
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V Dimensional analysis

o _ T
ot ox’
C Now consider the cooling time at a point in the plate

D The equation for the cooling time t. must be dimensionally
consistent, and can only depend on the relevant factors. So

[2.]=time [T]="K
[a]= (length)2 (time)fl [H]=length
where Cis an unknown dimensionless constant

t =CT‘0"H°,

Hence [r]=[T]'[e]'[H] ) )
| roma Y —> | E By inspection
(time) =(K) (%j (length) a=0;b=-1c=2
me
So
(time) =(°K)a (length)*"™ (time) ™" t = Co 'H?
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V Dimensional analysis
a_T_aazT
ot ox’
F Meaning of solution ¢,=Ca 'H’
1 The time for cooling the plate to some fraction of its
initial temperature is proportional to H?
2 Doubling the plate thickness quadruples the cooling
time 5
3 IfC=1,then 1, zH—
o

This can be used for rough estimates of the cooling
time
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