

E Flow analogs			
Flowing quantity	Incompressible Fluid	Heat	Chemical Species
Conserved quantity	Mass	Heat Energy	Molecules
1-D flux law	Darcy's law $q = -k \frac{\partial H}{\partial x}$	Fourier's law $q = -k \frac{\partial T}{\partial x}$	Fick's law $J = -D \frac{\partial c}{\partial x}$
Flux term	q= volume flux density m³/(m²∙sec)	q= heat flux density joules/(m ² •sec)	J = diffusion flux moles/(m ² •sec)
Coefficient	k = hydraulic conductivity m/sec	k = thermal conductivity Joules/(m•°K•sec)	D = diffusivity m²/sec
Potential term	H = head (m)	T = temperature (°K)	c = concentration (moles/m ³)
1-D diffusion law	$\frac{\partial H}{\partial t} = \alpha \frac{\partial^2 H}{\partial x^2}$	$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$
Coefficient	α = hydraulic diffusivity m²/sec	α = thermal diffusivity m ² /sec	D = diffusivity m²/sec
Steady state flow (Term on left side of diffusion law = 0)	$\nabla^2 H = 0$	$\nabla^2 T = 0$	$\nabla^2 c = 0$
4/16/18		GG454	3

6

7

