SUBSIDENCE MECHANICS: CONSOLIDATION (37)

- I Main Topics
 - A Consolidation vs. compaction
 - B Mechanics of subsidence due to pore pressure changes
 - (Evaluation of subsidence)

II Consolidation vs. compaction Definitions from Lambe and Whitman (1969)

A Consolidation: a decrease in volume resulting from dissipation of excess pore pressure.

II Consolidation vs. compaction Definitions from Lambe and Whitman (1969)

B Compaction: a densification process involving mechanical equipment, usually a roller, and as distinguished from preloading and dewatering.

OPTIMIZING SOIL COMPACTION

© D.H. Gray

http://dot.ca.gov/hq/LandArch/webinars/images/optimizing_soil_compaction.jpg

III Mechanics of subsidence due to pore pressure changes

A Stages of consolidation

- 1 Initial consolidation: Void volume loss due to air loss
- 2 <u>Primary consolidation:</u> Void volume loss due to pore fluid loss
 - a Fluid "loss" requires fluid flow
 - b Flow reflects changes in pore pressure/effective stress
 - c Flow and pore pressure dissipation takes time, so primary consolidation is time-dependent
- 3 Secondary consolidation: due to decrease in solid volume
- B Pressure here is considered to be <u>positive</u>

C Hydromechanical analog for consolidation

- Soils, sediments, and sedimentary rock consolidate as fluid volume (and pore volume) is lost
- As pore volume and pore pressure (u) decrease
 - Material column height decreases
 - Effective normal compressive stress increase

D Consolidation: poro-elastic strain

$$\Delta H = H_0 \frac{\Delta H}{H_0}$$

For 1-D consolidation

$$\Delta H = H_0 \frac{\Delta H}{H_0} = H_0 \frac{(\Delta e)H_s}{(1+e_0)H_s}$$

$$\Delta H = H_0 \frac{\Delta e}{1 + e_0} = H_0 \varepsilon_{vert}$$

where

e = void ratio;

 e_0 = initial void ratio

 Δe = change in void ratio

 $\varepsilon_{\text{vert}}$ = vertical strain

Settlement = $-\Delta H$

$$e = \frac{V_{voids}}{V_{solids}} = \frac{V_{voids}}{V_{total} - V_{voids}} = \frac{(V_{voids})/V_{total}}{(V_{total} - V_{voids})/V_{total}} = \frac{n}{1 - n}$$

$$n = \frac{V_{voids}}{V_{total}} = \frac{V_{voids}}{V_{solids} + V_{voids}} = \frac{(V_{voids})/V_{solids}}{(V_{solids} + V_{voids})/V_{solids}} = \frac{e}{1 + e}$$

D Consolidation: poro-elastic strain

Assumption: change in void ratio scales with the change in effective stress: $\Delta e \propto \Delta \sigma_z'$.

$$\Delta H = H_0 \frac{\Delta e}{1 + e_0} \left(\frac{-\Delta \sigma_z'}{-\Delta \sigma_z'} \right) = -H_0 m_v \Delta \sigma_z'$$

where

$$m_{v} = \frac{(-\Delta e)/(1+e_{0})}{\Delta \sigma'_{z}}$$

 $m_v = -vertical strain/change in effective stress$

 m_v = coefficient of volume change

D Consolidation: poro-elastic strain

Alternative expression

$$\Delta H = H_0 \frac{\Delta e}{1 + e_0} \left(\frac{-\Delta \sigma_z'}{-\Delta \sigma_z'} \right) = \frac{-H_0}{1 + e_0} a_v \Delta \sigma_z'$$

where

$$a_{v} = \frac{-\Delta e}{\Delta \sigma_{z}'}$$

 a_v = -void ratio change/change in effective stress

 a_v = coefficient of compressibility

• Total pore pressure change (Δu_{total}) equals change in pore pressure in excess of hydrostatic pressure ($\Delta u_{excess} = \Delta u_{e}$)

$$u_{total} = u_{hydrostatic} + u_{excess}$$

$$\Delta u_{total} = \Delta u_{excess}$$

u = pore pressure

 $u_e = excess$ pore pressure

 $u_0 = \underline{initial}$ excess pore pressure

 $u_{hyd} = \underline{hydrostatic}$ pore pressure

• Increase in effective normal compress stress (Δu_{total}) equals decrease in excess hydrostatic pressure $(\Delta u_{excess} = \Delta u_e)$

$$\sigma_{z(total)} = \sigma'_z + u$$

$$\sigma'_z = \sigma_{z(total)} - u$$

$$\Delta \sigma'_z = -\Delta u = -\Delta u_{excess}$$

Time

u = pore pressure

u_e = <u>excess</u> pore pressure

 $u_0 = initial$ excess pore pressure

 $u_{hyd} = \underline{hydrostatic}$ pore pressure

• Primary consolidation ratio U(t) varies with time as fluid flows, pore pressure (u) drops, and effective normal compressive stress ($\Delta\sigma'_z$) increases

$$U(t) = \frac{\Delta H(t)}{\Delta H_{\text{max}}} = \frac{\Delta e(t)}{\Delta e_{\text{max}}}$$

$$U = \frac{\Delta H}{\Delta H_{\text{max}}} = \frac{-H_0 m_v \Delta \sigma'_z}{-H_0 m_v \Delta \sigma'_{z(\text{max})}} = \frac{\Delta \sigma'_z}{\Delta \sigma'_{z(\text{max})}}$$

$$U = \frac{-\Delta u}{-\Delta u_{\text{max}}} = \frac{-\Delta u_e}{-\Delta u_{e(\text{max})}} = \frac{\Delta u_e}{\Delta u_{e(\text{max})}}$$

u = pore pressure

 $u_e = excess$ pore pressure

 $u_0 = initial$ excess pore pressure

 $u_{hyd} = \underline{hydrostatic}$ pore pressure

 Primary consolidation ratio U(t) depends on the ratio of the excess pore pressure (u_e) to the initial excess pore pressure (u₀)

$$U(t) = \frac{\Delta H(t)}{\Delta H_{\text{max}}} = \frac{\Delta u_e}{\Delta u_{e(\text{max})}}$$

$$\Delta u_e = u_e - u_0$$

$$\Delta u_{e(\text{max})} = -u_0$$

$$U(t) = 1 - \frac{u_e}{u_0}$$

u = pore pressure

 $u_e = excess$ pore pressure

 $u_0 = initial$ excess pore pressure

 $u_{hvd} = \underline{hydrostatic}$ pore pressure

Note: U usually varies with position. One can use the **average** consolidation ratio in a column of material to find the height change for the column.

References

Lambe, T.W., and Whitman, R.V., 1969, Soil mechanics, 1969: Wiley, New York, 553
 p.