HAZARDS AND RISKS ALONG COASTS (34)

- I Main Topics
 - A Hazard recognition
 - B Hazard characterization
 - C Risk evaluation (analysis)
 - D Risk assessment
 - E Local engineering approaches
 - F Closing comments

4/13/15 GG454 1

II Hazard recognition

- A Hazards peculiar to coasts
 - 1 Coastal erosion
 - 2 Coastal deposition
 - 3 Hurricanes
 - 4 Tsunamis

II Hazard recognition

- B Hazards accentuated at coasts
 - 1 Flooding from relative sea level change
 - 2 Quick clays (where young sediments are uplifted)
 - 3 Seismic shaking (because of proximity to subduction zones)

4/13/15 GG454

III Hazard characterization

- A Possible characterization targets
 - 1 Waves and currents
 - 2 Wind
 - 3 Weather
 - 4 Climate
 - 5 Sediment (sources, sinks, fluxes)
 - 6 Topography/bathymetry
 - 7 Sea-level change
 - 8 Climate change
 - 9 Ecosystems
 - 10 Effects of human activity

III Hazard characterization

- A Characterization methods (focus here is on coastal erosion)
 - 1 Geologic record
 - 2 Historical review (e.g., UK)
 - 3 Aerial photography
 - 4 Ground surveys (fieldwork)

Shoreline position change at a transect on on Oahu

http://pubs.usgs.gov/of/2011/1051/pdf/ofr2011-1051_report_508.pdf

4/13/15 GG454

III Hazard characterization

5 LIDAR and GIS (need for teamwork) http://www.google.com/

https://www.youtube.com/watch?v=S4d5oofMujg

III Hazard characterization

6 Drone surveys (45-minute survey time here)

https://www.youtube.com/watch?v=f-JF7cEM004

4/13/15 GG454

IV Risk evaluation (analysis)

- A Risk = (Probability of loss)(Cost of loss)
- B Loss probability depends on weather and climate
- C Requires identifying what is at risk
 - 1 Cities
 - 2 Harbors/piers
 - 3 Property
 - 4 Buildings
 - 5 Pipelines (e.g., oil, sewage) and cables
 - 6 Floating structures (e.g., drill rigs)
 - 7 Seawalls, jetties, breakwaters, groins, rip rap
 - 8 Habitat/fisheries
- D Requires identifying appropriate time scale

http://www.nanoos.org/education/themes/coastal_hazards.php

http://people.uwec.edu/jolhm/eh3/group7/Picture1.jpg

4/13/15

GG454

D 10 Costliest Atlantic Hurricanes

	Damage (Billions)	Deaths	Vear	Peak	Areas affected
Katrina	\$125.00			5	The Bahamas, U.S. Gulf Coast
Sandy	\$71.40	,	2012	3	The Caribbean, U.S. East Coast, Eastern Canada
Ike	\$37.50	195	2008	4	Greater Antilles, Texas, Louisiana, Midwestern U.S.
Wilma	\$29.30	23	2005	5	Greater Antilles, Central America, Florida
Andrew	\$26.50	65	1992	5	The Bahamas, Florida, U.S. Gulf Coast
Ivan	\$23.30	124	2004	5	The Caribbean, Venezuela, U.S. Gulf Coast
Irene	\$16.60	56	2011	3	The Caribbean, U.S. East Coast, Eastern Canada
Charley	\$15.10	40	2004	4	Jamaica, Cayman Islands, Cuba, Florida, The Carolinas
Rita	\$12.00	62	2005	5	Cuba, U.S. Gulf Coast
Frances	\$9.85	49	2004	4	The Caribbean, Eastern U.S., Ontario
4/13/15				GG454	S

E Tracks of all tropical cyclones, 1985–2005 (Risks are widespread, but not uniform)

http://en.wikipedia.org/wiki/Tropical_cyclone

IV Risk Assessment Is the level of risk acceptable?

A Yes

- 1 Can be based on a thorough analysis
- 2 Can be based on an analysis that ignores infrequent, high-energy events
- 3 Can be a default answer
- 4 Can involve coastal management options

B No

- 1 Do not build (esp. where waves focus)
- 2 Exercise coastal management options if risk can be made acceptable

4/13/15 GG454 13

IV Risk Assessment C Coastal management options

- 1 "Do nothing"
 - a Commonly politically difficult
 - b Can designate "forfeited land" as open space
 - c Key costs
 - i Forfeited land
 - ii Loss of infrastructure
 - iii Tax base
 - d Can change assessed land value to offset tax base loss (e.g., Encinitas, CA)

http://en.wikipedia.org/wiki/Coastal_management

4/13/15 GG454 1-

IV Risk Assessment C Coastal management options

- Managed retreat or realignment,
 - a Plan for retreat
 - b Adopt engineering solutions that account for natural processes
 - c Identify where to construct new defenses
 - d Can be cost-effective
 - e Key costs
 - i Loss of land
 - ii Purchase cost of land

http://en.wikipedia.org/wiki/Coastal_management

4/13/15 GG454 15

IVRisk Assessment C Coastal management options

- 3 "Hold the line"
 - a Traditional
 - b Protects shoreline, commonly at expense of beach
 - c Usually involves "hard" engineering (e.g., seawalls)
 - d Can involve "soft" engineering (e.g., sand replenishment)

http://en.wikipedia.org/wiki/Coastal_management

IV Risk Assessment C Coastal management options

- 4 Move seawards
 - a Construct new seaward defenses
 - b can create land of high value
 - c Usually involves "hard" engineering
 - d Can involve "soft" engineering (e.g., sand replenishment)
 - E Perturbs system; can create new problems

http://en.wikipedia.org/wiki/Coastal_management

4/13/15 GG454 17

IV Risk Assessment C Coastal management options

- 5 Limited intervention
 - a Raise coastal land
 - b Build vertically
 - c Can involve "hard" and soft" engineering

http://en.wikipedia.org/wiki/Coastal_management

IV Risk assessment

D Insurance

- 1 Coastal erosion insurance(?)
 Not covered by National Flood Insurance Program
- 1 Hurricane insurance
 - A Available in Hawaii
 - B Augmentable by flood insurance (to cover flooding during hurricane)
- 2 Tsunami insurance(?)
- 3 Coastal sedimentation insurance(?) http://ageconsearch.umn.edu/bitstream/21818/1/sp00ke01.pdf

4/13/15 GG454 19

V Local engineering approaches

A Groins

- 1 Groins: barriers or walls perpendicular to the sea
- 2 Commonly used to create or maintain beaches
- 3 Deposition on side facing longshore current
- 4 Erosion on side in lee of longshore current
- 5 Do not protect against stormdriven waves
- 6 Generally cost-effective
- 7 Low maintenance
- 8 Excessive emplacement of groins can diminish sediment flux "downdrift" and result in erosion

http://njscuba.net/biology/misc_coast.php

4/13/15 GG454 21

B Jetties

- 1 Jetty: a structure that projects from the land out into water
 - a Piers
 - b Wharfs
 - c Docks
 - d Breakwaters
- 2 Can disrupt longshore currents (like groins)
- 3 Harbor jetties intended to maintain a deep channel
 - a Channel erosion if jetty pairs spaced too closely
 - b Channel deposition if jetty pairs spaced too widely

Jetties constructed of dolos at Humboldt Bay harbor

http://en.wikipedia.org/wiki/Jetty

C Breakwaters

- 1 Breakwater: Offshore structure that alters waves and filters the energy of waves and tides
- 2 Waves break offshore and lose erosive power inside breakwater
- 3 Diminished wave action behind breakwaters can lead to sediment deposition

http://www.southwestcoastalgroup.org/cc_defence_offshorebreakwaters.html

4/13/15 GG454 23

D Seawalls

- 1 Structure intended to protect land behind seawall
- 2 Straight seawalls
 - a Can receive simultaneous large wave impact
 - b Subject to wave damage
 - c Reflect waves
 - d Can induce scouring by stationary clapotic waves
- 3 Curved seawalls dissipate energy more effectively
- 4 Commonly result in beach loss

Sea wall at Saint-Jean-de-Luz, France

http://commons.wikimedia.org/wiki/ File:Sea_wall_at_Saint_Jean_de_Luz.jpg

E Rock armor (Riprap)

- Boulders placed along the shore
- Used in areas prone to erosion to absorb the wave energy and hold beach material.
- Does not hinder longshore drift
- Rock armour has a limited lifespan, it is not effective in storm conditions, and it reduces the recreational value of a beach.
- Can be lost by undermining of underlying sand
- The cost is around £3000 per metre, depending on the type of rocks used.

Riprap along San Francisco Bay

http://en.wikipedia.org/wiki/Riprap

4/13/15 GG454 25

F Interlocking structures: Alternatives to monolithic walls and riprap

- 1 Resist waves and dissipate wave energy better than walls
- 2 Resist foundering resulting from erosion of underlying sand
- 3 Tetrapods
- 4 Dolosse

http://en.wikipedia.org/wiki/Tetrapod_(struc

Dolosse, Cape Town

http://en.wikipedia.org/wiki/Dolos

http://www.japanfocus.org/-Stephen-Hesse/2481

4/13/15

13

G Gabions

- 1 Gabion: retaining wall of stone-filled wire cages
- 2 Can be angled ("battered"), stepped, and stacked vertically
- 3 Advantages over riprap
 - a Modularity/can be stacked in various shapes
 - b Resistant to transport by water
- 4 Advantages over monolithic structures
 - a Flexibility
 - b Dissipation of wave energy
 - c Drainage
- 5 Strength can increase with time by sedimentation and vegetation
- 6 Life expectancy
 - a Depends on wire, not stone
 - b PVC-coated galvanized gabions: ~60 yrs
- 7 Also for debris flow retardation

Battered gabion, Solvakia

Stepped gabion

http://en.wikipedia.org/wiki/Gabion

4/13/15 GG454

VI Closing comments

- A Ocean stores enormous amounts of heat energy
- B Coastal system are dynamic
- C Time frame important
- D Static engineering solutions are not permanent
- E "Should do" vs. "can do"
- F Monitoring should accompany engineering and policy choices

https://www.youtube.com/watch?v=m7RSryuJAwE

GG454

28

4/13/15

References

- · Hurricane damage
- http://en.wikipedia.org/wiki/List of costliest Atlantic hurricanes#Listed by cost . 28United States only.29
- LIDAR overview
- https://www.youtube.com/watch?v=EYbhNSUnIdU
- Storm surge models
- https://www.youtube.com/watch?v=S3j87m7wAik
- Rip currents
- https://www.youtube.com/watch?v=M9OMIKsTuqY
- Tidal models
- https://www.youtube.com/watch?v=p_wEAzXr3il
- Internal waves
- https://www.youtube.com/watch?v=x7GXLJQ2Zn0
- Tsunami wave tank demo
- https://www.youtube.com/watch?v=wCmLGeG8YMI
- Debate over coastal erosion, Otago, New Zealand
- https://www.youtube.com/watch?v= -8BX1nEhg4