REFLECTION, REFRACTION, AND DIFFRACTION (31)

- **I** Main Topics
 - A Huygens' Principle
 - **B** Reflection
 - C Interference
 - **D** Refraction
 - **E** Diffraction

3/25/15 GG454 1

II Huygen's Principle

A Every point on a wave front is a source of spherical secondary wavelets

- B The new wave front is tangent to the secondary wavelet fronts
- C The points on a wavelet front are in phase

III Reflection

- A Reflection: "to bend (bounce) back"
- B Angle of incidence = angle of reflection
- C Waves reflect better off vertical walls than gently sloped beaches

Consider wavefront AA' that advances to BB' and then to CC' Ray AB' I to wavefront B'B because wavefronts are normal to rays Ray BC' I to wavefront CC because wavefronts are normal to rays (Ray BC' I to wavefront C'C because CC' is tangent to Arc B')

BC =B'C' = v Δ t; B'C = CB'; and both Δ B'BC and Δ CC'B' are right triangles, so

 $\Delta BB'C \sim \Delta C'CB'. \ \ \text{So angle BB'C (i.e., } \alpha) = \text{angle C'CB' (i.e., } \beta).$

Now A'B' \perp B'B, and nB' \perp B'C, so $\theta_j = \alpha$.

Also, $\alpha+\beta+\gamma=90^{\circ}$, and $\alpha+\gamma+\theta_r=90^{\circ}$, so $\theta_r=\beta$.

Whereas $\alpha = \beta$, $\theta_i = \theta_r$.

The angle of incidence = the angle of reflection.

3/25/15 GG454 3

III Reflection

https://www.youtube.com/watch?v=PevRZAxDxZw

3/25/15

GG454

4

III Reflection

- D Polarity of reflected waves can change depending on conditions at the reflector
 - 1 Polarity reverses at a "hard" boundary
 - 2 Polarity is maintained at a "soft" boundary

3/25/15 GG454 5

III Reflection https://www.youtube.com/watch?v=0mZk2vW5rWU 3/25/15 GG454 6

IV Interference

- A Based on superposition
- B The total amplitude of two waves at a point is the sum of the amplitudes of the individual waves
- C Constructive interference where total amplitude increases
- D Total destructive interference where total amplitude goes to zero

3/25/15 GG454

IV Interference

- A Based on superposition
- B The total amplitude of two waves at a point is the sum of the amplitudes of the individual waves
- C Constructive interference where total amplitude increases
- D Total destructive interference where total amplitude goes to zero

https://www.youtube.com/watch?v=5PmnaPvAvQY

3/25/15 GG454

V Refraction

- A Refraction: bending of a wave front
- B Snell's Law
- C Effect of water depth on wave speed
- D Wave fronts traveling into the slower region bend toward the normal of the fast-slow interface
- E Effects of refraction
 - 1 Waves become parallel to coast
 - 2 Waves concentrate on headlands
 - 3 Waves diverge in bays

V Refraction: bending of a wavefront (Fraser River, Canada)

https://www.youtube.com/watch?v=bt08ZMj37rw

3/25/15 GG454 11

V Refraction (Benghazi, Libya)

https://www.youtube.com/watch?v=wPzvWKU0-c8

VI Diffraction

- A Diffraction: deflection of waves around obstacles with edges
- B Manifestation of Huygens' principal
- C Effects of diffraction seen at breakwaters

3/25/15

VI Diffraction (Waikiki, Hawaii)

https://www.youtube.com/watch?v=IZgYswtwlT8

3/25/15 GG454

VI Diffraction (Buzzard's Bay, Massachusetts)

https://www.youtube.com/watch?v=7UhpWR0_rrE GG454

15

VI Diffraction (Joinville, Santa Catarina, Brazil)

https://www.youtube.com/watch?v=dQgknHOyatk

3/25/15 GG454

References

Halliday, R., and Resnick, R., 1986, Fundamentals of physics: John Wiley & Sons, New York, 880 p.

Huygens' principle

• https://www.youtube.com/watch?v=vqa4L0DuWbM