CHARACTERIZATION AND MONITORING OF SLOPES (27)

- I Main Topics
 - **B** Reconnaissance
 - C Aerial imagery
 - D Engineering geologic mapping
 - E Ground deformation surveys
 - F Boreholes and piezometers

3/20/15 GG454

II Reconnaissance

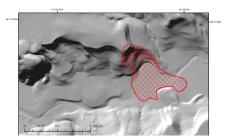
- A Obtain and review existing literature*
 - 1 Reports and journal publications
 - 2 Maps (e.g., geologic, topographic, soil, lot line)
- B Review beyond immediate site limits*
- C Obtain and review aerial imagery of site (ideally for different years or different seasons)*
- D Visit the site and perform field reconnaissance*
- E Repeat steps A-D as necessary
- F Decide where more detailed information is required
- * Note: Order steps A-D as appropriate

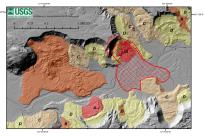
III Aerial imagery

- A Aerial photography
 - 1 Effective, relatively low cost
 - 2 Sun angle (high vs. low)
 - 3 Vertical vs. oblique
 - 4 Slope moisture and vegetation vary seasonally
 - 5 Fine-grained, lowpermeability surficial materials commonly have fine-grained drainage patterns
 - 6 Moist slopes often appear darker than light slopes
 - 7 Pay attention to vegetation
 - 8 Color bests black and white

http://earthobservatory.nasa.gov/blogs/earthmatters/2014/03/26/aerial-views-of-the-landslide-in-oso-washington/

3/20/15

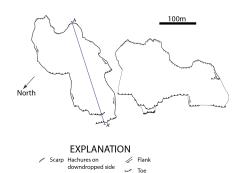

GG454


3

III Aerial imagery

B LIDAR

- 1 Near-photographic resolution
- 2 Good map base
- 3 Provides DEM
- 4 Can analyze digitally
- 5 Can digitally remove vegetation
- 6 Can chose direction of synthetic illumination and perspective

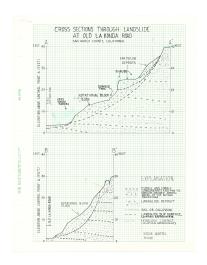


IV Engineering Geologic Mapping

- A Large-scale, site-specific geologic maps of engineering relevance
- B Map features
 - 1 Slide boundary/boundaries
 - 2 Geomorphic features (e.g., landslide boundaries)
 - 3 Type of rock or soil units
 - 4 Bedding attitudes
 - 5 Geologic structures
 - 6 Topography/slope
 - 7 Fractures and faults
 - 8 Water sources, seeps, and channels
 - 9 Displacements
 - 10 Property boundaries
 - 11 Relevant vegetation
 - 12 Locations of cross sections

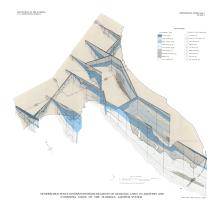

Map of the borders of two landslides

Modified from Baum and Fleming, 1991


3/20/15 GG454

IV Engineering Geologic Mapping Example

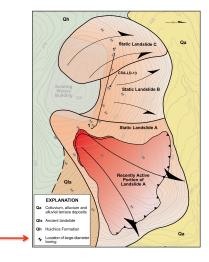
IV Engineering Geologic Mapping


- C Engineering geologic/ topographic profile
 - 1 Establish control points
 - 2 Map relevant features
 - 3 Project features to depth

3/20/15 GG454 7

IV Engineering Geologic Mapping

D Fence diagram (useful for large, complicated slides)



http://sofia.usgs.gov/publications/papers/pp1403a/plates/plate1-lg.gif

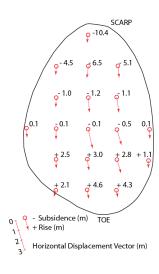
IV Engineering Geologic Mapping

- E Useful for siting boreholes, trenches, geophysical surveys, inclinometers, and piezometers
- F Update maps and crosssections based on boreholes, trenches, geophysical surveys, inclinometers, and piezometers
- **G** Monitor holes

3/20/15

GG454

V Ground deformation surveys


GG454

- A Establish survey points for monitoring slide; some must extend beyond the landslide to stable points
- B Survey the diagonals between grid points for quadrilateral strain measurements

3/20/15

V Ground deformation surveys

C Evaluate displacement and strain (from triangular elements; see strain rosette problem of Middleton and Wilcock, 1994, p. 253-254)

В

 θ_{XB}

- 1 Displacements from changes in position
- 2 Principal strains from changes in lengths (extensions) of legs of triangles in survey

$$\begin{split} \varepsilon_{A} &= \varepsilon_{xx} \cos^{2} \theta_{xA} + \varepsilon_{xy} \sin 2\theta_{xA} + \varepsilon_{yy} \sin^{2} \theta_{xA} \\ \varepsilon_{B} &= \varepsilon_{xx} \cos^{2} \theta_{xB} + \varepsilon_{xy} \sin 2\theta_{xB} + \varepsilon_{yy} \sin^{2} \theta_{xB} \\ \varepsilon_{C} &= \varepsilon_{xx} \cos^{2} \theta_{xC} + \varepsilon_{xy} \sin 2\theta_{xC} + \varepsilon_{yy} \sin^{2} \theta_{xC} \\ \begin{bmatrix} \varepsilon_{A} \\ \varepsilon_{B} \\ \varepsilon_{C} \end{bmatrix} = \begin{bmatrix} \cos^{2} \theta_{xA} & \sin^{2} \theta_{xA} & \sin^{2} \theta_{xB} \\ \cos^{2} \theta_{xC} & \sin^{2} \theta_{xC} & \sin^{2} \theta_{xC} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{xy} \\ \varepsilon_{yy} \end{bmatrix} \\ [\varepsilon^{*}] = [A][\varepsilon] \end{split}$$

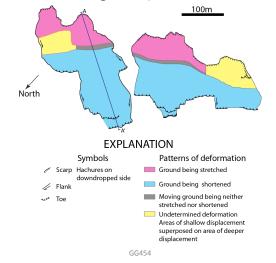
$$\begin{bmatrix} A^{-1} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}^* \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon} \end{bmatrix} \Rightarrow \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & \boldsymbol{\varepsilon}_{xy} \\ \boldsymbol{\varepsilon}_{xy} & \boldsymbol{\varepsilon}_{yy} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & \boldsymbol{\varepsilon}_{xy} \\ \boldsymbol{\varepsilon}_{yx} & \boldsymbol{\varepsilon}_{yy} \end{bmatrix} \Rightarrow \begin{bmatrix} \boldsymbol{\varepsilon}_1 & 0 \\ 0 & \boldsymbol{\varepsilon}_2 \end{bmatrix}$$

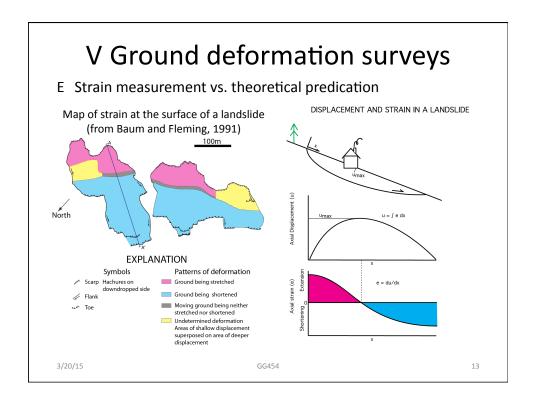
Symmetric Principal strain matrix values

3/20/15

3/20/15

154


 θ_{XA}


 θ_{XC}

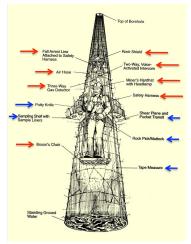
11

D Example of map of strain on the surface of a landslide (from Baum and Fleming, 1991)

- A Small (<10 cm diameter) boreholes
 - 1 Useful for directly detecting features at depth
 - 2 Drilling alters sample properties and water content; this can compromise value of lab tests using extracted samples
 - 3 Boreholes sample a statistically insignificant part of a body. Need to use judgment as to how far to extrapolate drilling data, how many holes to drill, and where to drill them; this is a very persistent problem in geotechnical practice.
 - 4 Vertical boreholes tend to miss vertical fractures

- B Large-diameter (~0.5m) boreholes
 - 1 Geologist entering a borehole in an aluminum logging cage.

From Johnson and Cole, 2001


3/20/15

GG454

15

VI Boreholes and piezometers

- B Large-diameter (~0.5m) boreholes
 - 2 Diagram showing equipment for safety and logging in a large borehole

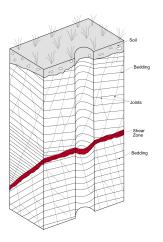
From Johnson and Cole, 2001

3/20/15

GG454

- B Large-diameter (~0.5m) boreholes
 - 3 Photograph looking upward at gouge materials exposed below a polished bounding surface within a largediameter borehole.

From Johnson and Cole, 2001

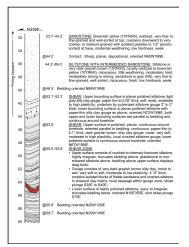

3/20/15

17

VI Boreholes and piezometers

GG454

- B Large-diameter (~0.5m) boreholes
 - 5 Diagram showing planar structural elements (bedding, joints and a shear zone) intersecting a hypothetical borehole and cross section.
 - 6 The attitude of the planar elements can be solved for with three points on the borehole trace.



From Johnson and Cole, 2001

3/20/15 GG454

.0

- B Large-diameter (~0.5m) boreholes
 - 6 Example of a downhole log describing lithologic units, layering, shears, and orientation of bedding.

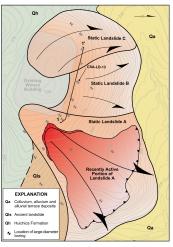
From Johnson and Cole, 2001

3/20/15

GG454

19

VI Boreholes and piezometers

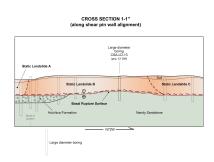

- B Large-diameter (~0.5m) boreholes
 - 5 Photograph of shear zone samples. In this case, brass sample liners were driven into gouge materials that overlie a striated bounding surface.

From Johnson and Cole, 2001

3/20/15 GG454

- B Large-diameter (~0.5m) boreholes
 - 7 Simplified map of the Napa winery site showing the location of static and recently active landslides, large-diameter borings and the existing winery building

From Johnson and Cole, 2001

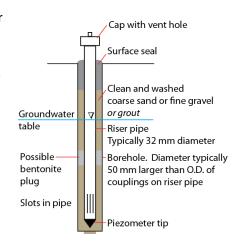

3/20/15

GG454

21

VI Boreholes and piezometers

- B Large-diameter (~0.5m) boreholes
 - 8 simplified cross section along the alignment of the series of largediameter borings drilled at the Napa winery site. This cross section is based upon data from a series of large-diameter borings within landslides B and C.



From Johnson and Cole, 2001

3/20/15

GG454

- C Piezometers (for evaluating water head)
 - 1 Piezometers commonly are inexpensive and very useful
 - Displacement and water table level commonly coupled (Iverson and Major, 1987)
 - 3 Values at a point; pose extrapolation challenge
 - 4 Deformation during sliding (e.g., cracking) can radically alter the hydrology of a slide (Harp et al., 1990)
 - 5 Piezometer holes can change the hydrology of a slide

Modified from http://www.fhwa.dot.gov/bridge/tunnel/pubs/nhi09010/15a.cfm

3/20/15

2

References

GG454

- http://www.geoinsite.com/images/GeoinsiteData2/ johnson and cole 2001 downhole logging.pdf
- Middleton, G.V., and Wilcock, P.R., 1994, Mechanics in the earth and environmental sciences, Cambridge University Press, London, 476 p.
- Iverson, R.M., and Major, J.J., 1987, Rainfall, groundwater flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations: Geological Society of America Bulletin, v. 99, p. 579-594.
- Harp, E.W., Wells, W.G., Sarmiento, J.G., 1990. Pore pressure response during failure in soils. Geological Society of America Bulletin, v. 102, p. 428–438.