CLASSIFICATION OF MASS WASTING PROCESSES (24)

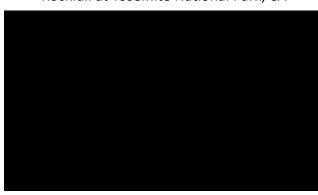
- I Main Topics
 - A Mass wasting classification scheme
 - B Types of geologic materials
 - C Styles of mass wasting

3/4/15 GG454 1

Mass wasting classification scheme Varnes classification scheme (simplified) TYPES OF SLOPE MOVEMENT PROCESSES Process/ Fall Topple Slide Avalanche (complex) Rock "Coarse (Debris) "Fine soil" (Earth) Ice/snow Glacier | Ice fall Avalanche analog 3/4/15 GG454

III Types of geologic materials

- A Rock: material that requires blasting or heavy equipment to move
- B Debris: loose material that contains a significant portion of coarse material (20%-80% > 2mm)
- C Earth: loose material that primarily consists of fine material (80+% < 2mm)


3/4/15 GG454 3

IV Styles of mass wasting TYPES OF SLOPE MOVEMENT PROCESSES Cross-seaction views Falls Falls Falls Topples C Slides D Lateral spreads E Flows F Complex Flows Flows Flows GG454 A Falls Topples Cross-seaction views Translational Lateral spreads Flows Flows GG454 A Falls Topples Translational Topples Translational Topples Translational T

A Falls

- 1 Free fall through air; with bouncing or rolling
- 2 Maximum speed: ~10² m/sec
- 3 Example: rock falls from cliffs

Rockfall at Yosemite National Park, CA

https://www.youtube.com/watch?v=H0YhlqP1BgE

3/4/15 GG454

A Falls

- 1 Free fall through air; with bouncing or rolling
- 2 Maximum speed: ~10² m/sec
- 3 Example: rock falls from cliffs

Rockfall, South Tyrol, Italy

https://www.youtube.com/watch?v=-5SiQqSrolw

B Topples

- 1 Initiates as a tilting or overturning;
- 2 Generally requires steep fractures parallel to free face
- 3 Maximum speed: ~10² m/sec
- 4 Example: topples along banks of Mississippi River

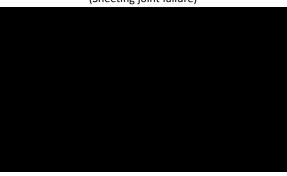
Toppling Failure, Coast of France

https://www.youtube.com/watch?v=gvSe27Ht-NY

3/4/15 GG454

C Slides

- Material moves parallel to (and maintains contact with) one or more surfaces or narrow zones of failure
- 2 Speed: Highly variable (10^{-9} m/sec 10^1 m/sec)
- 3 Main types
 - a Rotational slide (slump): slip surface curved in cross section Pure rotational slides usually in uniform engineering material
 - b Translational slide: slip surface is roughly planar
- Examples
 - a Manoa Valley slides;
 - b Small failures along highway cuts



https://www.youtube.com/watch?v=_zcjbF6omWI

C Slides

- Material moves parallel to (and maintains contact with) one or more surfaces or narrow zones of failure
- 2 Speed: Highly variable (10⁻⁹ m/sec 10¹ m/sec)
- 3 Two many types of slides
 - a Rotational slide (slump): slip surface curved in cross section Pure rotational slides usually in uniform engineering material
 - b Translational slide: slip surface is roughly planar
- 4 Examples
 - a Manoa Valley slides;
 - b Small failures along highway cuts

Polk County Rockslide, Tennessee (Sheeting joint failure)

https://www.youtube.com/watch?v=39LCzBS8yOM

3/4/15 GG454

D Lateral spreads

- 1 Material on a shallow slope is extended; there may or may not be a welldefined failure surface
- 2 Speed: Highly variable (10⁻⁹ m/sec 10² m/sec)
- 3 Commonly triggered by shock to young quick clays
- 4 Example: G street "slide" in Anchorage, 1964

http://www.idahogeology.org/DrawOnePage.asp?PageID=83

 $http://www.idahogeology.org/uploads/Hazards/Landslides/Image_5_dlg8.jpg$

E Flows

- Deformation distributed through material in a relatively continuous fashion
- 2 Speed: Highly variable (10⁻⁹ m/sec 10² m/sec)
- 3 Enormous variety of phenomena (e.g. bedrock flows, soil creep, silt flows, dry sand flows, debris flows, debris avalanches)
- 4 Similarity between earthflows, lava flows, glaciers

Debris Flow, Clear Creek, Colorado

debris flow

Clear Creek County,

Colorado

https://www.youtube.com/watch?v=8mKC3eID074

3/4/15 GG454 11

E Flows

- 1 Deformation distributed through material in a relatively continuous fashion
- 2 Speed: Highly variable (10⁻⁹ m/sec 10² m/sec)
- 3 Enormous variety of phenomena (e.g. bedrock flows, soil creep, silt flows, dry sand flows, debris flows, debris avalanches)
- 4 Similarity between earthflows, lava flows, glaciers

Debris Flow, South Korea

2011.07.27

korea gangnam landslide

https://www.youtube.com/watch?v=ghAzOE6xxnE

E Flows

- Deformation distributed through material in a relatively continuous fashion
- 2 Speed: Highly variable (10⁻⁹ m/sec 10² m/sec)
- 3 Enormous variety of phenomena (e.g. bedrock flows, soil creep, silt flows, dry sand flows, debris flows, debris avalanches)
- 4 Similarity between earthflows, lava flows, glaciers

Earth Flow, northern Italy

https://www.youtube.com/watch?v=Dct3JQn2m0o

3/4/15 GG454 13

F Complex

- 1 Movement is by a combination of the above main styles; this implies gradations between styles
- 2 Speed: Highly variable (10⁻⁹ m/sec 10² m/sec)
- 3 Examples: Elm, Switzerland; Nevado Huascaran; Blackhawk, CA
- 4 Includes many phenomena termed avalanches

https://www.youtube.com/watch?v=fK_3AneOujQ