

III Major events of the 20th century http://www.canadacollege.net/galloway/haz.9.html				
Year	Country	Name and Type	Triggering process	Impact
1911	Tadzhik Republic	Usoy rock slide	Usoy earthquake M=7.4	54 killed
1919	Indonesia (Java)	Kalut lahra (volcanic mud flow)	Kelut volcano (eruption)	5,100 killed 104 villages destroyed
1920	Ningxia (China)	Haiyuan landslide	-	~100,000 killed
1921	Kazakh Republic	Alma-Ata debris flow	Snow melt	500 killed
1933	Sichuan (China)	Deixi landslide	Deixi earthquake M=7.5	6,800 killed; 2,500 drowned when dam failed
1939	Hyogo (Japan)	Mount Rokko slide/mud flow	Rain (typhoon)	505 dead, 130,000 homes destroyed
1949	Tadzhik Republic	Kahit rock slide	Khait earthquake M=7.5	12,000 to 20,000 killed; 33 villages destroyed
1953	Wakayama (Japan)	Arita River slide/debris/mud flow	Rain (typhoon)	460 dead, 4,722 homes destroyed
1953	Kyoto (Japan)	Minamiyamashiro slides/debris/ mud flow	Rain (typhoon)	336 dead, 5,122 homes destroyed
1958	Shizuoka (Japan)	Kanogawa slide/debris/mud flow	Rain (typhoon)	1,094 dead; 19,754 homes destroyed
1962	Ancash (Peru)	Nevado Huascaran debris avalanche	-	4,000 to 5,000 killed most of Ranrahirca village destroyed
2/22/17		GG303		4

Year	Country	Name and Type	Triggering process	Impact
1963	Fruili-Venezia-Griulia (Italy)	Vaiont rock slide	Filling of Vaiont Reservoir	~2,000 killed; city of Longarone damaged ~ \$970 million (1994
1964	Alaska (United States)	Alaska slides	1964 earthquake M=9.4	Estimated \$860 million in (1994 U.S. dollars)
1965	Yunnan (China)	Rock slide	-	444 dead; 4 villages
1966	Rio de Janeiro (Brazil)	Rio de Janeiro slides/avalanches/ debris/mud flows	Heavy rain	~1,000 dead
1967	Serra das Araras (Brazil)	Serra das Araras slides/ avalanches/debris/mud flows	Heavy rain	~1,700 dead

Year	Country	Name and Type	Triggering process	Impact
1970	Ancash (Peru)	Nevado Huascaran debris avalanche	Earthquake M=7.7	18,000 dead; town Yungay destroyed ar Ranrahirca partially destroyed
1974	Huancavelia (Peru)	Mayunmarca rock/slide/debris/ avalanche	Rainfall	~450 killed; Mayunmarca village destroyed failure of 150-m-high landslid dam caused major flooding downstrear
1980	Washington (United States)	Mount St. Helens rockslide/ debris avalanche	Eruption of Mt. St. Helens	World's largest histor landslide 23-km-lon debris avalanche wit average velocity of 1 km/hr; surface remobilized into 95-k long debris flow
1983	Utah (United States)	Thistle debris slide	Snow melt and heavy rain	Total losses ~\$600 million in 1994 U.S dollars
1985	Tolima (Columbia)	Nevado del Ruiz debris flows	Eruption of Nevado del Ruiz	>20,000 dead; four towns destroyed; ~10 km long debris flow

lew Guinea Bairaman rock sli	de/avalanche Bairaman ea	arthquake Village of Bairaman
	M=7	1 destroyed. Debris avalanche formed 210 m-high dam that impounded 50-million cubic meter lake; dan failed, causing 100-m deep debris flow downstream
(Ecuador) Reventador	andslide Reventodor e M=6.1 and	earthquake ~1,000 killed \$1.3 d M=6.9 billion (in 1994 U.S. dollars)
(Columbia) Paez land	slides Paez earthqu	ake M=6.4 271 dead; 1,700 missing; 32,000 displaced; villages destroyed
	(Ecuador) Reventador I (Columbia) Paez land	(Ecuador) Reventador landslide Reventodor M=6.1 an (Columbia) Paez landslides Paez earthqu

<section-header><section-header><section-header><text><text><text><text><text>

1962 6 >13 170 30	1970 22.5 50-100 280 83	48,000 γr >30 100-200? 315-355		
6 >13 170 30	22.5 50-100 280 83	>30 100-200? 315-355		
>13 170 30	50-100 280 83	100-200? 315-355		
170 30	280 83	315-355		
30	83	400		
		123		
>60	>120	>140		
4000	>18,000	?		
Projected velocity of pre-Columbian event (48,000 yr)				
100	200 300	400		
	>60 4000 ted velocity of p	>60 >120 4000 >18,000 ted velocity of pre-Columbian events PRe-columbian events 1962 1962 100 200 300 AVERAGE VELOCITY (KM/HR)		

	Potentia	al Energy		
Estimato Rio Sant	e of minimum velocity at a based on runup height	Potential energy release from 1970 avalanche		
ΔP.Ε.	= mg∆h	m = ρV		
K.E.	= (1/2)mv ²	m _{min} = (2.7e3 kg/m ³)(50e6 m ³)		
(1/2)mv ²	= mg∆h	m _{max} = (2.7e3 kg/m ³)(100e6 m ³)		
v	= (2g∆h) ^{1/2}	g = 9.8 kg/m ³ e6		
<u>1962</u> For Δh = 30 <u>1970</u> For Δh = 83 <u>Pre-Colum</u> For Δh = 12	0m, v _{min} = 87 km/hr 8m, v _{min} = 145 km/hr <u>bian</u> 23m, v _{min} = 177 km/hr	$\Delta h = 6000 \text{ m} - 2500 \text{ m} = 3500 \text{ m}$ Using 100 million cubic meters $\Delta P.E. = mg\Delta h = 9.3 \text{ e15 joules}$ Equivalent to ~150 Hiroshima bombs over a path length of 14.5 km 10 bombs/km or 1 bomb/100 m.		
2/22/17	C	G303 29		

- Risk scenarios for Yungay–Ranrahirca area using societal risk criteria. ALARP, = As Low as Reasonably Practicable. ISR = Intense Scrutiny Region. Based on Fig. 4 of Fell et al. (2005).
- Black squares: scenarios for the Ranrahirca fan. Maximum (A1 and A2) and minimum (B1 and B2) existing hazard scenarios for 500 and 1000 deaths respectively.
- Red dots: retroactive risk for a single event in 48,000 years at Yungay (Y), i.e., the 1970 event, and two events in 48,000 years at Ranrahirca (R), i.e., the 1962 and 1970 events
- See http://faculty.washington.edu/kramer/ 522/SOA1_Fell_et_al_Vancouver.pdf
- See also http:// australiangeomechanics.org/admin/wpcontent/uploads/2010/11/LRM2007-c.pdf

2/22/17

31

GG303

Reference Material

- Transportation Research Board, 1978, Landslides, Special Report 176, National Academy Press, 234 p.
- Transportation Research Board, 1996, Landslides, Special Report 247, National Academy Press, 673 p.
- Reviews in Engineering Geology, volume III, 1977, Coates, D.R., ed., Geological Society of America, 278 p. Landslide Dams: Processes, Risk, and Mitigation, 1986, Schuster, R.J., ed., Geotechnical Society of America, 278 p. Landslide Dams: Processes, Risk, and Mitigation, 1986, Schuster, R.J., ed., Geotechnical Special Publication No. 3, American Society of Civil Engineers, 164 p. Fleming, R.W., and Johnson, A.M., 1990, Structures associated with strike-slip faults that bound landslide elements: Jahns Memorial volume, Journal of Engineering Geology, v. 27, p. 39-114. •
- Vonder Linden, K., 1990, The Portugese Bend Landslide: Jahns Memorial volume, Journal of Engineering Geology, v. 27, p. 301-374.
- Committee on Natural Disasters, 1984, The Utah Landslides, debris flows, and floods of May and June 1983: National Academy Press, 96 p. Rockslides and Avalanches, 1979, Voight, B., ed., Elsevier, N.Y., 2 volumes.
- Crandell, D.R., Miller, C.D., Glicken, H.X., Christiansen, R.L., and Newhall, C.G., 1984, Catastrophic debris avalanche from ancestral Mount Shasta volcano, California: Geology, v. 12, p. 143-146.
- . Rahn, P., Engineering Geology.
- Fuans, S.G., Bishop, N.F., Smoll, L.F., Murillo, P.V., Delaneym K.B., and Oliver_Smith, A., 2009, A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970: Engineering Geology, v., 108, p. 96-118.

2/22/17

GG303

33