RESPONSE OF STRUCTURES (16)

- I Main Topics
 - A Seismic records
 - B Acceleration, velocity and displacement spectra
 - B Resonance and natural frequencies
 - C Response of structures

2/14/15 GG303 1

II Seismic time series records

A Accelerogram (plot of acceleration vs. time)

Three components of ground acceleration recorded from a site in Hollywood ~20 km from the 1971 San Fernando earthquake fault rupture. From Bolt, 1988.

B Time series records of acceleration, velocity, and displacement

- 1 Acceleration (a)
 - a = dv/dt
 - b Peak force at peak acceleration
 - c Peak acceleration at right: ~1100cm/sec²
 - d Time of peak acceleration: ~7.5 sec
- Velocity (speed) (v)
- a v = du/dt
 - b Peak <u>kinetic energy</u> at peak velocity
 - c Peak velocity at right: ~115 cm/sec
 - d Time of peak velocity: ~3 sec
- 3 Displacement (u)
 - a Peak displacement at right: ~40 cm
 - b Time of peak displacement: ~ 5 sec

Recordings of N. 14° E. component of horizontal ground motion at Pacoima damsite for 1971 San Fernando earthquake (from Page and others, 1975).

Fig. 31 from USGS Prof. Paper 1360

2/14/15

GG303

III Seismic spectra

- A Spectra represent parameters (e.g., displacement, velocity, and acceleration) as a function of wave frequency (or period), not time
- B Reveal the frequency (or period) and amplitude of the most energetic/forceful waves

III Seismic spectra

E Relationships among spectral envelopes

1
$$y = A \sin[(2\pi/\lambda)(x+vt)]$$

$$v = \lambda/T = f\lambda; \ \lambda = v/f$$

 $y = A\sin[(2\pi f/v)(x+vt)]$

2 Now consider a particular point

$$y_0 = y(x=0)$$

$$= A \sin[(2\pi f/v)(vt)]$$
$$= A \sin(2\pi ft)$$

3 Let $\omega = 2\pi f = 2\pi/T = angular frequency$

$$y_0 = A\sin(\omega t)$$
 $y_0' = \frac{d[A\sin(\omega t)]}{dt}$
= $A\omega\cos(\omega t)$

$$y_0'' = \frac{d(y_0')}{dt} = \frac{d[A\omega\cos(\omega t)]}{dt}$$
$$= -A\omega^2\sin(\omega t) = -\omega^2 y_0$$

$$\omega = \left(\left| \frac{y_0''}{y_0} \right| \right)^{1/2}$$

2/14/15 GG303

7

III Seismic spectra

F Amplitude relationships among displacement, velocity, and accelerations for a single angular frequency

Let $\omega = 2\pi f = 2\pi/T = angular$ frequency

$$y_0 = A \sin(\omega t)$$

$$y_0' = A\omega\cos(\omega t)$$

$$y_0'' = -A\omega^2 \sin(\omega t) = -\omega^2 y_0$$

2/14/15

8

III Seismic spectra

F Relationships among spectral envelopes for a frequency range

Let
$$\omega = 2\pi f = 2\pi/T = angular frequency$$

IIISeismic spectra

Frequency (f)	(Hz)	0.01*	0.1*	1*	10*	100
Angular frequency ω		0.06	0.6	6	63	628
Maximum displacement (y)	(m)	10-3	10-3	10 ⁻³	10-3	10-3
Maximum velocity y' (= ω y)	(m/sec)	6 x 10 ⁻⁵	6 x 10 ⁻⁴	6 x 10 ⁻³	6 x 10 ⁻²	6 x 10 ⁻¹
Max. acceleration y" (= $ -\omega^2 y $)	(m/sec ²)	39 x 10 ⁻⁵	39 x 10 ⁻⁴	39 x 10 ⁻³	39 x 10 ⁻²	39 x 10 ⁻¹

- G Max. acceleration (forces) commonly at 2-10 Hz (T=0.1-0.5 sec), max. velocities (kinetic energy) at 0.5-2 Hz (T=0.5-2 sec), and max. displacements at 0.006-0.5 Hz (T=2-160 sec)
 - 1 High frequency (small period) waves: high amplitudes of acceleration, small amplitudes of displacement
 - 2 Low frequency (long period) waves: low amplitudes of acceleration, large amplitudes of displacement

 $\hbox{*Important frequency for design of large engineering structures} \\$

III Seismic spectra

H Effects of source and distance IDEALIZED UNDAMPED VELOCITY SPECTRUM CURVES

- 1 A small, nearby earthquake can affect short-period structures more than a larger, distant quake
- 2 A large, distant earthquake can affect long-period structures more than a smaller, nearby quake
- 3 Short-period (high frequency) waves attenuate with distance more readily than long-period (low frequency) waves

From Housner, 1970, in Wiegel, 1970

2/14/15 GG303 11

IV Resonance and natural frequencies

- A Resonance: vibration of large amplitude due to arrival of energy at a particular frequency
- B Natural frequency: The frequency at which a structure will resonate
- C Natural frequency of a pendulum
 - 1 Natural period: $T = 2\pi(L/g)^{1/2}$ Natural period increases with length
 - 2 Natural frequency: $f = 1/T = (g/L)^{1/2}/(2\pi)$
 - 3 Natural angular frequency: $\omega = 2\pi f = (g/L)^{1/2}$

Diagram of a simple pendulum

IV Resonance and natural frequencies

- D Natural frequency of a mass on a spring (simple harmonic oscillator)
 - 1 Natural period: $T = 2\pi (m/k)^{1/2}$
 - 2 Natural frequency: $f = 1/T = (k/m)^{1/2}/(2\pi)$
 - 3 Natural angular frequency:

$$\omega = 2\pi f = (k/m)^{1/2}$$

* No damping in these expressions

Diagram of a simple harmonic oscillator with damping

2/14/15 GG303 13

IV Resonance and natural frequencies

- E Rule of thumb for buildings: natural period = # of stories/10
- F Avoid structural designs with natural periods that match the natural period of the underlying materials (or the source)
- G Previous experience helpful for step F

2/14/15 GG303

14

V Response of structures

- A Earthquakes commonly impart large shear forces at the base of a building
- B Bolt buildings to foundations and have sufficiently stiff ground floors
- C Asymmetric designs susceptible to twisting
- D Sophisticated models are used now to help design critical structures (beyond the scope of this course)

Collapsed General Hospital 1985 Mexico City earthquake

http://en.wikipedia.org/wiki/1985_Mexico_City_earthquake

2/14/15

GG303

15