Mohr Circle for Tractions (12)

- I Main Topics
 - A Stresses vs. tractions
 - B Mohr circle for tractions
 - C Example

1/30/15 GG303

Mohr Circle for Tractions

- From King et al., 1994 (Fig. 11)
- Coulomb stress change caused by the Landers rupture. The left-lateral ML=6.5 Big Bear rupture occurred along dotted line 3 hr 26 min after the Landers main shock. The Coulomb stress increase at the future Big Bear epicenter is 2.2-2.9 bars.

http://earthquake.usgs.gov/research/modeling/papers/landers.php

1/30/15 GG303 2

II Stresses vs. tractions

- A Similarities between stresses and tractions
 - 1 Same dimensions (force per unit area)
 - 2 The normal stress acting on a plane matches the normal traction

Note the use of double subscripts here on the tractions; This unconventional

1/30/15 GG303 3

II Stresses vs. tractions

- B Differences between stresses and tractions
 - 1 Stresses are tensor quantities and tractions are vectors.
 - 2 The stress state is defined at a point using a fixed reference frame, whereas a traction is defined on a plane with a reference frame that floats with the plane.
 - 3 Shear stress components on perpendicular planes have the same sign, whereas shear tractions on perpendicular planes have opposite signs.

Positive stresses at a point Positive tractions on perpendicular planes

1/30/15 GG303 4

III Mohr circle for tractions

$$A \quad \tau_n = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta$$

B
$$\tau_s = (\sigma_2 - \sigma_1)\sin\theta\cos\theta$$

Now
$$\cos^2 \theta = (1/2)(1 + \cos 2\theta)$$

 $\sin^2 \theta = (1/2)(1 - \cos 2\theta)$
 $\sin \theta \cos \theta = (1/2)(\sin 2\theta)$

$$C \tau_n = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$$

$$D \quad \tau_s = \frac{-(\sigma_1 - \sigma_2)}{2} \sin 2\theta$$

1/30/15 GG303 5

III Mohr circle for tractions

$$C \tau_n = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$$

$$D \quad \tau_s = \frac{-(\sigma_1 - \sigma_2)}{2} \sin 2\theta$$

Now
$$c = \frac{\sigma_1 + \sigma_2}{2}$$
 $r = \frac{\sigma_1 - \sigma_2}{2}$

 $\mathsf{E} \ \tau_n = c + r \cos(-2\theta)$

$$\mathsf{F} \ \tau_s = r \sin(-2\theta)^{\mathsf{r}}$$

 $\tau_S = ((\sigma_1 - \sigma_2)/2) \sin (-2\theta)$

Equations of a Mohr circle for tractions Relate tractions on planes of different orientation c is mean normal stress (traction) r is maximum shear traction (the circle radius) σ_1 is the most tensile stress

 σ_2 is the most tensile stress

303 6

1/30/15

IIIMohr circle for tractions

FORCE BALANCE DIAGRAM ("Physical space")

("Mohr circle space") $\begin{array}{c} \tau_s \\ -2\theta = -90^{\circ} \\ -180^{\circ} \\ \sigma_2 \\ \hline -2\theta = 0^{\circ} \end{array}$

CORRESPONDING MOHR CIRCLE

 $\tau_S = ((\sigma_1 - \sigma_2)/2) \sin{(-2\theta)}$ Fig. 17.1

 $\tau_{n} = ((\sigma_{1} + \sigma_{2})/2) + ((\sigma_{1} - \sigma_{2})/2) \cos(-2\theta)$

G Key points

- 1 $\theta = \theta_{1n}$ is the angle between <u>the normal</u> to the plane σ_1 acts on and <u>the normal</u> to the plane of interest
- 2 If positive θ is counterclockwise in "physical space", -2 θ is clockwise in "Mohr circle space"

1/30/15 GG303

IIIMohr circle for tractions

Stresses		Tractions	
σ_{XX}	+10 MPa	τ _{xn}	+10 MPa
σ_{xy}	+3 MPa	τ _{xs}	+3 MPa
σ_{yx}	+3 MPa	$ au_{ys}$	-3 МРа
σуу	+2 MPa	τ _{yn}	+2 MPa

Note that the magnitude of the normal stresses and normal tractions are equal. So $\tau_1 = \sigma_1$ below.

Example 1 using Mohr circle to find principal stresses

- Suppose σ_{xx} = +10 MPa (tension), σ_{xy} = +3 MPa (left lateral shear), σ_{yy} = +2 MPa (tension), and σ_{yx} = +3 MPa (right lateral shear).
- A) Draw a box in a reference frame and clearly label the stresses on its sides; <u>this is a critically important step.</u>
- B) Determine the stresses and tractions on the faces of the box. Here, we use the tensor "on-in" convention.

1/30/15 GG303

IIIMohr circle for tractions

Here, $-2\theta_{XX'} = -37^{\circ} \text{(clockwise)}$, so $\theta_{XX'} = +18.5^{\circ} \text{(counterclockwise)}$

- Plot and label the points on a set of labelled τ_n, τ_s axes.
- Draw the Mohr circle through the points by finding the center (c) and radius (r) of the circle.
- Label the principal magnitudes τ_1 and τ_2 ($\tau_1 > \tau_2$); they come from the intersection of the circle with the normal stress (τ_n) axis.

 Assign reference axes to the principal directions; I chose x' for the τ_1 -direction.

- Assign reference axes to the principal infections, remove x for the t₁-direction.

 Label the negative double angle between the traction pair that act on a plane with a known normal direction (here, x or y) and the traction pair that act on a plane with an unknown direction (e.g., x').

 Draw and label a new reference frame and box showing the principal stresses, making sure to use the double angle relationship correctly.

1/30/15 GG303