IMPORTANT ENGINEERING & HYDROGEOLOGIC PROPERTIES OF ROCKS (02)

I Main Topics

A Density F Elastic properties

B Hardness G Creep behavior

C Stress H Porosity

D Strain I Hydraulic conductivity

E Strength J Chemical stability and

reactivity

1/15/15 GG303

II Density

A Density: mass/volume (e.g. kg/m³)

Example: $\rho_{water} = 10^3 \text{ kg/m}^3$

B Specific gravity (ρ/ρ_{water})

C Unit weight (γ = weight/volume)

D Factors affecting density

1 Composition

2 Porosity

3 Saturation

III Hardness

A Mohs hardness scale

1 Talc	2 Gypsum
3 Calcite	4 Flourite, Iron
4-4.5 Steel	
5 Apatite, Glass	6 Orthoclase
7 Quartz	8 Topaz
9 Corundum	10 Diamond

B Factors affecting rock hardness

- 1 Mineralogy (± cement)
- 2 Weathering: generally decreases rock hardness

1/15/15 GG303 3

IV Stress

A <u>Dimensions</u>: <u>Force/area</u>

B Units: 1 Pa = $1N/m^2$ 1 MPa = $10^6 N/m^2 = 145 psi$ $\approx 10 atm$

C Pressure at bottom of a 10-mdeep pool ≈ 0.1 MPa ≈1

atmosphere

D Stress as a tensor (quantities with two associated directions)

1 σ_{ij} acts on a plane normal to the i- direction, and in the j-direction

2 Normal stress acts normal to a surface; shear stress acts parallel to a surface

1/15/15 GG303

V Strain

Dimension changes from a uniaxial compression test

- A Strain measures deformation
- B Elongation

$$\varepsilon = (L_f - L_0) / L_0 = \Delta L / L_0$$

- C arepsilon is dimensionless
- D Poisson's ratio

$$v = -\varepsilon_2/\varepsilon_1$$

from uniaxial stress tests

1/15/15 GG303 5

VI Strength

- A Strength: maximum stress that a rock can withstand
- B Uniaxial compressive strength ~ 10x uniaxial tensile strength
- C Factors affecting rock strength
 - 1 Rock type (crystalline vs. clastic) and mineralogy
 - 2 Weathering: generally decreases rock strength
 - 3 Discontinuities: these decrease rock strength
 - 4 Sample size: small samples stronger than large samples; see (3)

1/15/15

GG303

6

VI Strength

- C Factors affecting rock strength
 - 1 Rock type (crystalline vs. clastic) and mineralogy; crystalline rocks generally stronger
 - 2 Weathering: generally decreases rock strength
 - 3 Grain-scale fabric
 - 4 Discontinuities: they decrease rock strength
 - 5 Sample size: strength decreases with sample size

Basalt with columnar joint

Granitic rock with sheeting joints

7

1/15/15

GG303

VII Elastic Properties

A Stress: strain relations

1 Hooke's Law of Linear Elasticity (1D)

$$\sigma_{xx} = E\varepsilon_{xx}$$

E = Young's modulus

2 Shear stress & shear strain

$$\sigma_{xy} = 2\mu\varepsilon_{xy}$$

1/15/15

GG303

VII Elastic Properties

3 Hooke's Law of Linear Elasticity for isotropic materials (3D)

$$\varepsilon_{xx} = \sigma_{xx}/E - (\sigma_{yy} + \sigma_{zz})(v/E)$$

$$\varepsilon_{yy} = \sigma_{yy}/E - (\sigma_{zz} + \sigma_{xx})(v/E)$$

$$\varepsilon_{zz} = \sigma_{zz}/E - (\sigma_{xx} + \sigma_{yy})(v/E)$$

Summing these, with $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -P$, yields the volumetric dilation(Δ) as a function of the pressure (P) and the bulk modulus (K)

$$\Delta = \frac{\Delta V}{V_0}$$

$$= \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$

$$= \frac{-3P}{E} - \frac{-6PV}{E}$$

$$= [-P] \left[\frac{3(1-2V)}{E} \right]$$

$$= [-P][K]$$

1/15/15 GG303

VII Elastic Properties

C Relationship between elastic properties and seismic wave speeds

The bulk modulus (K) and shear modulus (μ) can be deduced from the compressional wave speed (V_p) and shear wave speed (V_s) if the density is known

Two equations with two elastic unknowns if the density is known

$$V_p = \sqrt{\left(K + \frac{4}{3}\mu\right)/\rho}$$

$$V_s = \sqrt{\mu/\rho}$$

$$\mu = \frac{E}{2(1+v)}$$

$$K = \left\lceil \frac{3(1-2v)}{E} \right\rceil$$

1/15/15 GG303

10

VIII Creep behavior

- A Creep: "slow" inelastic deformation at low stress
- B Rocks that creep
 - 1 Ice
 - 2 Salt

Salt glaciers (dark) in Iran

http://en.wikipedia.org/wiki/Salt glacier

http://en.wikipedia.org/wiki/Waste_Isolation_Pilot_Plant

1/15/15 GG303 11

VIII Creep behavior

 WIPP repository for nuclear waste hosted in Salado Formation (salt) near Carlsbad, NM

http://en.wikipedia.org/wiki/Waste_Isolation_Pilot_Plant

IX Porosity (n)

- A Porosity (n)
 - n = pore volume /total volume
- B Void ratio (e)
 - e = void volume /volume of solids
- C Fluids (e.g. air, water, petroleum, natural gas) occupy voids
- D Factors affecting porosity
 - 1 Rock type
 - 2 Cementation
 - 3 Weathering
 - 4 Sorting: excellent sorting (or poor grading) → high porosity

1/15/15 GG303 13

X Hydraulic conductivity (K)

- A Darcy's Law for porous media flow
 - $Q = -K \qquad i \qquad A$

Discharge = (Hyd. cond) (head gradient) (Area) $m^3/sec = (m/sec)$ (m/m) (m^2)

- B Hydraulic conductivity: how readily rock, modeled as a continuum, conducts fluid
- C Factors affecting hydraulic conductivity
 - 1 Dynamic viscosity and density of fluid
 - 2 Character of rock ("intrinsic permeability")
 - a Interconnection and apertures of pores
 - b Interconnection and apertures of fractures

i = head gradient

$$i = \frac{\Delta h}{\Delta I} = \frac{h_2 - h_1}{\Delta I}$$

1/15/15 GG303

Mechanical Energy in Flowing Water

- Consider the mechanical energy contained by a small mass of water m, volume V, and density ρ.
- For steady state, isothermal flow of an incompressible fluid (ρ is constant)
- (1) Total energy = kinetic energy + elevation potential energy + pressure potential energy.
- (2) Dimension of pressure: (force/ area) or energy/volume (i.e. force x distance/volume).
- Pressure measures internal energy in a volume of fluid.
- (3) Total head = Velocity head + elevation head (H) + pressure head

(1)
$$E_{total} = \frac{1}{2}mv^2 + mgH + E_{pressure}$$

Dividing through by V

(2)
$$\frac{E_{total}}{V} = \frac{1}{2}\rho v^2 + \rho g H + P$$

Dividing through by ρg

(3)
$$\frac{E_{total}}{\rho g V} = \frac{1}{2g} v^2 + H + \frac{P}{\rho g}$$

1/15/15 GG303 15

Mechanical Energy in Flowing Water

$$\frac{E_{total}}{\rho g V} = \frac{1}{2g} v^2 + H + \frac{P}{\rho g}$$

- Dimensions of hydraulic head: length.
- Hydraulic head: the standing elevation that water rises to in a well
- Usually the kinetic energy loss is negligible for ground water flow, so the hydraulic head is effectively the elevation head plus the pressure head.
- Water flows from high head (high potential energy) to low head (low potential energy): Q = -K i A
- If water flowed from high pressure to low pressure, then water would flow from the bottom of a swimming pool to the top!

XI Chemical stability and reactivity

Calcite or gypsum The Great Blue Hole, Belize

http://en.wikipedia.org/wiki/Great_Blue_Hole

Sulphides (e.g., pyrite)

http://en.wikipedia.org/wiki/Acid_mine_drainage

1/15/15 GG303 17

XI Chemical stability and reactivity

- Alkali–silica reaction ASR (pozzolanic reaction)
- An acid-base reaction between calcium hydroxide (Portlandite or Ca(OH)₂), and silicic acid (H₄SiO₄ or Si(OH)₄)
- Causes swelling of amorphous (glassy) silica

Cracks in a highway barrier from ASR

http://en.wikipedia.org/wiki/Alkali-silica_reaction

 $\mathrm{Ca(OH)_2} + \mathrm{H_4SiO_4} \rightarrow \mathrm{Ca^{2+}} + \mathrm{H_2SiO_4^{2-}} + 2 \; \mathrm{H_2O} \rightarrow \mathrm{CaH_2SiO_4} \cdot 2 \; \mathrm{H_2O}$