NUCLEAR WASTE DISPOSAL (44)

- I Main topics
  - A Types of nuclear waste
  - B Disposal options
  - C Experience of different countries in nuclear waste disposal
  - D U.S. approach to nuclear waste disposal
- II Types of nuclear waste

```
http://www.nrc.gov/waste.html
```

- A High-level (HLW): waste from spent or reprocessed fuel
  - 1 Require heavy shielding
  - 2 10.2 x 10<sup>6</sup> ft<sup>3</sup> + 0.085 x 10<sup>6</sup> ft<sup>3</sup> (Since 1980)
  - 3 10<sup>0</sup>-10<sup>2</sup> m<sup>3</sup> per 1000 MW reactor/year (Milnes, 1985)
  - 4 In form of liquids, solids, sludge, and "cakes" (powder)
  - 5 Main concern: <sup>239</sup>Pu;  $\tau \approx$  24,000 years
- B Transuranic (TRU): man-made radioactive elements (e.g., plutonium)
  - 1 26 x  $10^{6}$  ft<sup>3</sup> + 0.025 x  $10^{6}$  ft<sup>3</sup> (Since 1980)
  - 2 α-particle emitters (particularly injurious to cell tissue)
  - 3 Main concern: <sup>239</sup>Pu;  $\tau \approx$  24,000 years
- C Low-level (LLW) not high-level, not uranium mill tailings; less than 10 nanocuries of TRU (e.g., contaminated clothes)
  - 1 Do not require heavy shielding
  - 2 10<sup>3</sup>-10<sup>5</sup> m<sup>3</sup> per 1000 MW reactor/year (Milnes, 1985)
  - 3 Main concern: <sup>90</sup>Sr and <sup>137</sup>Cs;  $\tau \approx 30$  years
  - 4 Mostly  $\beta$ -particle emitters
  - 5 Main disposal options
    - a Shallow burial
    - b Dumping at sea
    - c Liquid injection
    - d Grout injection (Oak Ridge)

III High-level waste disposal options

|                       | Pros                   | Cons                                                    |
|-----------------------|------------------------|---------------------------------------------------------|
| Geologic Disposal     | Detailed               | Political factors:                                      |
|                       | characterization       | Unstable funding                                        |
|                       | Many rock types        | Bureaucratic control                                    |
|                       | theoretically OK       | <ul> <li>Expediency can<br/>outweigh science</li> </ul> |
|                       |                        | <ul><li>"NIMBYism"</li></ul>                            |
| Crystalline basement  | Rocks are strong       | Fracture flow                                           |
| rocks (e.g., granites | Permeability is low    | Nearby mineral wealth                                   |
| and gneiss)           |                        |                                                         |
| Volcanic rocks (e.g., | Rocks strength         | Fracture flow                                           |
| basalt and tuff*)     | Permeability is low    | High variability of                                     |
|                       | Chemical sorption      | basalt                                                  |
| Shale or clay         | Low permeability       | Rock strength                                           |
| Salt                  | Low permeability       | Can dissolve                                            |
|                       | Fractures heal         |                                                         |
| Deep borehole         | Relatively inexpensive | Liquefied waste                                         |
| Injection             | On-site disposal       | Fractures                                               |
| Deep Underground      | Relatively inexpensive | Before solidifying,                                     |
| melting               | On-site disposal       | melt is highly mobile                                   |
|                       |                        | Fractures                                               |
| lcebed disposal       | Remoteness             | Climate change                                          |
|                       |                        | Antarctic Treaty of                                     |
|                       |                        | 1959                                                    |
| Seabed disposal       | Low permeability rock  | Access to biosphere                                     |
|                       | Dilution               | Biologic concentration                                  |
|                       | Remoteness             | of radioactivity                                        |
|                       |                        | Law of the Sea                                          |
| Extra-terrestrial     | Permanent disposal     | Rocket failure                                          |
| disposal              |                        | Loss of an energy                                       |
|                       |                        | resource                                                |

- IV Experience of different countries in nuclear waste disposal
  - A Need to be self-dependent requires use of a variety of rocks
  - B Sweden
    - 1 Decouple politics from site selection
  - C Switzerland
    - 1 Great openness after initial concealment of program
    - 2 Variety of sites being examined
  - D Canada
    - 1 Crystalline rock sites being examined
    - 2 Has Underground Rock Laboratory
- V U.S. approach to nuclear waste disposal
  - A Definition of acceptability
    - 1 No more than 1,000 cancer deaths in the next 10,000 years; emphasis on travel time to biosphere
    - 2 Legal criterion, not a "scientific" or "engineering" criterion
    - 3 10,000 year standard
      - a How the human race will evolve in 10,000 years?
      - b Geologic time frame for an "engineering" problem
      - c Pushes limits of our predictive ability
  - B Detailed standards set; Earth treated like an engineering material
  - C Quality assurance
    - 1 Provides detailed "paper trail" of work
    - 2 Tends to put technical control in hands of bureaucrats
  - D Yucca Mountain; DOE site
    - 1 Selection process
    - 2 Key geotechnical issues:
      - a Tectonic activity (seismicity and volcanism)
      - b Fracture hydrogeology and hydrogeochemistry of tuff

- E Alternative sites
  - Hanford, Washington (basalt); DOE site Key geotechnical issues: fractures in basalt, catastrophic floods, high variability in sedimentary sequences
  - 2 Deaf Smith County, Texas (salt) Key geotechnical issues: Ogallala aquifer
  - WIPP (Carlsbad, New Mexico)
     Key geotechnical issues: gas pressure, salt dissolution, fractured dolomite above repository

<u>References</u>

Milnes, A.G., 1985, Geology and Radwaste: Academic Press, New York, 328 p.

- National Research Council, 1990, Rethinking high-level radioactive waste disposal: National Academy Press, Washington, D.C., 38 p.
- Deese, D.A., 1978, Nuclear power and radioactive waste: D.C. Heath and Company, Lexington, Massachusetts, 206 p.
- Murray, R.L., 1989, Understanding radioactive waste: Battelle Press, Columbus, Ohio, 167 p.
- National Research Council, 1976, The shallow land burial of low-level radioactively contaminated solid waste: National Academy of Sciences, 150 p.
- Shapiro, F.C., 1981, Radwaste: Random House, New York, 288 p.
- National Research Council, 1962, Disposal of low-level radioactive waste into Pacific coastal water: National Academy Press, Washington, D.C., 87 p.

Selected Country Programs for High-Level Waste Burial

http://www.platts.com/features/nukewastedisposal/index.shtml

| Country           | Earliest Planned<br>Year                   | Status of Program                                                                                                                                     |
|-------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Argentina         | 2040                                       | Granite site selected at Gastre, Chubut                                                                                                               |
| Canada            | 2020                                       | Independent commission conducting four-year study of<br>government plan to bury irradiated fuel in granite at yet-<br>to-be-identified site           |
| China             | none                                       | Irradiated fuel to be reprocessed; Gobi desert sites under investigation                                                                              |
| Finland           | Construction to<br>begin in 2003-<br>2004. | The Finnish Parliament May 18 2001 decided on a permanent disposal site for HLW in Olkiluoto, Eurajoki. Operation of the facility will start in 2020. |
| France            | 2010                                       | Three sites to be selected and studied; final site not to be selected until 2006                                                                      |
| Germany           | 2008                                       | Gorleben salt dome sole site to be studied                                                                                                            |
| India             | 2010                                       | Irradiated fuel to be reprocessed, waste stored for 20 years, then buried in yet-to-be-identified granite site                                        |
| Italy             | 2040                                       | Irradiated fuel to be reprocessed, and waste stored for 50-60 years before burial in clay or granite                                                  |
| Japan             | 2020                                       | Limited site studies. Cooperative program with<br>China to build underground research facility                                                        |
| Netherlands       | 2040                                       | Interim storage of reprocessing waste for 50-100 years before eventual burial, possibly in another country                                            |
| Sweden            | 2020                                       | Granite site selected in 1997; evaluation studies under way at Aspo site near Oskarshamn nuclear complex                                              |
| United<br>States  | 2010                                       | Yucca Mountain site being studied. Will receive 70,000 tons of waste if approved                                                                      |
| United<br>Kingdom | 2030                                       | Fifty-year storage approved in 1982; exploring options for permanent disposal                                                                         |

## Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Destined for Geologic Disposal



http://www.platts.com/features/nukewastedisposal/index.shtml



http://www.platts.com/features/nukewastedisposal/index.shtml