
GG 454 March 31, 2002 1

Stephen Martel 3 0 - 1 University of Hawaii

THE WAVE EQUATION (30)

I Main Topics
A Assumptions and boundary conditions used in 2-D small wave theory
B The Laplace equation and fluid potential
C Solution of the wave equation
D Energy in a wavelength
E Shoaling of waves

I I Assumptions and boundary conditions used in 2-D small wave theory

                

y
H = 2A = wave height

u
v

η

ε
ζ

Particle�
orbit

Particle�
velocity

Still water�
level

x

y = -d

Water depth = +d

L

Small amplitude surface wave

Modified from Sorensen, 1978

Depth above�
bottom = d+y

A No geometry changes parallel to wave crest (2-D assumption)
B Wave amplitude is small relative to wave length and water depth; it

will follow that particle velocities are small relative to wave speed
C Water is homogeneous, incompressible, and surface tension is nil.
D The bottom is not moving, is impermeable, and is horizontal
E Pressure along air-sea interface is constant
F The water surface has the form of a cosine wave

η π= −





H x

L

t

T2
2cos
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III The Laplace equation and fluid potential

A Conservation of mass

Consider a box the shape of a cube, with fluid flowing in and out or it.
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The mass flow rate in the left side of the box is:   
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The mass flow rate out  the right side is     

1b
∆

∆
= ∆ ∆ +

m

t
y z u u2 ( )( )( )ρ ∆ .

For the bottom of the box, mass flow rate in is   

1 c
∆

∆
= ∆ ∆

m

t
x z v3 ( )( )( )ρ ,

and the mass flow rate out the top is     

1d
∆

∆
= ∆ ∆ +

m

t
x z v v4 ( )( )( )ρ ∆

If the fluid is incompressible (so no fluid can be compressed and stored in                                               
the box), then: a) the fluid mass flowing into the box in a given increment
of time must equal the fluid mass flowing out of the box in that same
increment of time, and b) the density of the fluid (ρ ) is a constant.

Remember that u and v are velocities in the x and y directions,
respectively.  So, what goes in equals what comes out:                                                   
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Substituting equations (1) into (2b)
3 ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) .ρ ρ ρ ρ∆ ∆ − ∆ ∆ + ∆ + ∆ ∆ − ∆ ∆ + ∆ =y z u y z u u x z v x z v v 0

Dividing out the terms ρ  and ∆z
4 ( )( ) ( )( ) ( )( ) ( )( ) .∆ − ∆ + ∆ + ∆ − ∆ + ∆ =y u y u u x v x v v 0

Now let ∆u = ∆x [∂u/∂x] and ∆v = ∆y [∂v/∂y]
5 ( )( ) ( )( [ / ]) ( )( ) ( )( [ / ]) .∆ − ∆ + ∆ ∂ ∂ + ∆ − ∆ + ∆ ∂ ∂ =y u y u x u x x v x v y v y 0

This simplifies to

6 − ∆ ∆
∂

∂
− ∆ ∆

∂

∂
=( )( ) ( )( ) .y x

u

x
x y

v

y
0

After dividing out the ∆x and ∆y terms

7a −
∂

∂
−

∂

∂
=

u

x

v

y
0 , or  7b

∂

∂
+

∂

∂
=

u

x

v

y
0, or 7c

∂

∂
= −

∂

∂

u

x

v

y
.

Equation 7c states that a change in flow in the x direction must be
compensated for by an opposite change in flow in the y-direction if mass
is to be conserved.
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B Conservation of angular momentum

[Conditions of irrotational flow (vorticity = 0)]

We don't want our box to rotate.  Experiments with submerged floats
beneath waves show that the floats do not spin.

u

v

u + ∆u

v + ∆v
∆u

∆v
∆y

∆x

∆y

∆x

Flow velocities on box sides

If there is no rotation, then there can be no moment:
8 ( ) (  ) ( ) (  )Force lever arm Force lever army y x x=

The shear force is related to the shear stress (τ) as follows:

9 F areashear = ( )( )τ

Substituting equation (9) into equation (8) yields.

1 0 τ τxy yxy z x x z y∆ ∆ ∆ ∆ ∆ ∆[ ]( )( ) = [ ]( )( )

For linear fluids, the shear stress is proportional to the velocity gradient

11a τ µxy
du

dy
= 11b τ µyx

dv

dx
= (µ = viscosity)

Substituting equations (11) into (10) then gives:

1 2 µ
∂
∂

µ
∂
∂
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
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∂
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∂
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∂
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x
− = 0 (vorticity = 0)
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C Irrotational potential flow and the Laplace equation

The Laplace equation is one of the most common equations in physics.  It

describes how the second partial derivatives of a function (φ) are related:

14a
∂

∂
+

∂

∂
=

2

2

2

2
0

φ φ

x y
o r 14b ∇ =2 0φ .

In the context of waves, φ  will represent a fluid potential function.  You

are already familiar with gravitational potential energy U:

1 5 U mgy= y = height

Partial derivatives             of potential functions, taken with respect to position,                  

yield measurable physical quantities (e.g., gravitational potential U):

1 6 − = − =
∂
∂
U

y
mg Fy Fy= gravitational force (Note that ∇2U = 0).

Darcy's law for one-dimensional fluid flow can be written in terms of

fluid potential φ :

1 7 q k
xx x= −











ρ

µ
∂φ
∂

where qx = flux (m/s), kx = permeability in the x-direction (m2), ρ  = density

(kg/m3), µ = fluid viscosity (kg m-1 s-1), and x = position (m).

   Suppose that a potential function φ exists that satisfies the Laplace

equation, and that the following conditions apply:

18a
∂

∂
=

φ
x

u, where u =horizontal component of particle velocity

18b
∂

∂
=

φ
y

v , where v =vertical component of particle velocity.

Now let us substitute the expressions of equations (18) into the Laplace
equation (equation 14a); this yields the continuity equation (7b).
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Does the vorticity condition hold?  Inserting eqs. (18) into eq. (13b):
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2 0
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∂

∂
∂
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∂
∂φ
∂

∂
∂ φ
∂ ∂

∂ φ
∂ ∂
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


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

−


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


= − =
2 2

0  So vorticity = 0.

So the Laplace equation can be used to study water waves.

Solutions to the Laplace equation also obey an averaging procedure, where
the value of the function at a point on a square grid is the average of the
values at the nearest four gridpoints.

ø0 ø1

ø2

ø3

ø4

ø5

ø6

ø7

ø8
x

y

∆x

∆y

φ0 = 1/4 [ φ1 + φ2 + φ3 + φ4]
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IV Solutions for wave speed and particle velocities
(see appendix for derivation)
A General solutions

φ  =  
H

2
g  cosh([2π / L][d + y]  sin(2πx / L  −  2πt / T )

(2π / T )cosh(2πd / L)
1 Wave speed or wave celerity (C)                                                   

C = (gT /2π) tanh(2πd/L) T = wave period = constant                                       
Function of wave period and relative water depth

2 Wave length (L)                         
L = CT

3 Horizontal particle velocity amplitude (|u|)                                                                   
|u| = (πH/T ) (cosh [2π(d+y)/L ])/(sinh [2πd/L ] )
Function of wave height and relative water depth and relative
distance above bottom

4 Vertical particle velocity amplitude (|v|)                                                                
|v| = (πH/T ) (sinh [2π(d+y)/L ])/(sinh [2πd/L ] )

5 Amplitude of horizontal particle displacement (  |                                                                          ζ|) 
|ζ| = |u| (T/2π)

6 Amplitude of vertical particle displacement (|                                                                      ε|)
|ε| = |v| (T/2π)

B Deep-water solutions (d/L > 0.5, or 2πd/L > π, so tanh(2πd/L) ≈ 1)
1 Wave speed (C)

a C = gT /2π         (function of wave period; independent of depth)
2 Wave length (L)

a L = CT
b L = (gT2)/2π     (function of wave period; independent of depth)

3 Horizontal particle velocity amplitude (|u|)
|u| = (πH/T)(e2πy/L).  
The horizontal velocities decrease exponentially with depth (y<0)

4 Vertical particle velocity amplitude (|v|)
|v| = (πH/T)(e2πy/L ).  
The vertical velocities decrease exponentially with depth (y<0)

5 Amplitude of horizontal particle displacement (|ζ|)

|ζ| = (H /2) (e2πy/L ) . Exponential decay with depth
6 Amplitude of vertical particle displacement (|ε| )

|ε| = (H /2) (e2πy/L ) . Exponential decay with depth
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C Shallow-water solutions (d/L < 0.05, or 2πd/L < π/10)
Examples: tides, tsunamis,
1 Wave speed (C) [tanh(2πd/L) ≈ 2πd/L]

C = (gT)(d/L) = (gd)(T/L) = (gd)(1/C) ⇒  C = (gd)1 / 2

i Function of water depth; independent of period
i i As water depth decreases, wave speed decreases

2 Wave length (L= CT)
L = (gd)1/2T

i As water depth decreases, T stays constant, L decreases
i i Waves will bunch together as they enter shallower water

3 Horizontal particle velocity amplitude (|u|)
|u| = (πH/T)/(2πd/L) = HL/2dT = (L/T)(H/2d) = C (H/2d)
|u| is independent of distance above bottom; |u| ≠0 at bottom

4 Vertical particle velocity amplitude (|v|)
|v| = (πH/T) [(d + y)/d]
|v| = 0 at bottom and increases linearly to πH/T at surface (y=0)

5 Amplitude of horizontal particle displacement (|ζ|)

|ζ| = (H/2)/(2 π d / L ) = (L/π)(H/d) Independent of y
6 Amplitude of vertical particle displacement (|ε|)

|ε| = (H/2) [(d + y)/d] Decays linearly with y

7 Wave base: y = -L/2  (e-π = 0.04)

Deep�
water

Shallow�
waterL/2�

(wave base)

Not to scale�
�
Modified from Sorenson, 1978
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V Energy in a wavelength (per unit length along wave crest)
A Kinetic energy = (Ek)/z = ρgH2L/16

B Potential energy = (Ep)/z = ρgH2L/16 So Ek = Ep!

C Total energy =  (ET)/z = (Ek+Ep)/z = ρgH2L/8

V I Shoaling of waves
Assuming no energy loss as a wave shoals*                                                                  

N
B1

B2
B1

B2
Case1:
Wave crest
is unstretched

Case 2:
Wave crest
is shortened

A E1 = E2
B (B1ρgH12L1)/8 = (B2ρgH22L2)/8

C (H2/H1) = (L1/L2)1/2 (B1/B2)1 /2

1 As L decreases, H increases                                            
2 As B decreases, H increases                                            

D Wave steepness = H/L
E Waves get taller and steeper as they shoal because:

L decreases and H increases (conservation of energy)
F Waves break when (H/L) = 1/7 tanh (2πd/L)
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Hyperbolic Functions                                 

sinh(β )  =  
βe  −  −βe

2
 =  β  +  

3β
3!

 +  
5β

5!
 +  ...

Shallow water: As ß →  0, sinh (ß) →  ß (from series expansion)

Deep water: As ß →  ∞, sinh (ß) →  (eß )/2 (from definition)

sinh (π) = 11.549

cosh(β )  =  
βe  +  −βe

2
 =  1 +  

2β
2!

 +  
4β

4!
 +  ...

Shallow water: As ß →  0, cosh (ß) →  1 (from definition)

Deep water: As ß →  ∞, cosh (ß) →  (eß )/2 (from definition)

cosh (π) = 11.592

tanh(β )  =  
βe  −  −βe
βe  +  −βe

 =  β  −  
3β

3
 +  

52β
15

 +  ...        for  β  <  
π
2

Shallow water: As ß →  0, tanh (ß) →  ß (from series expansion)
Deep water: As ß →  ∞, tanh (ß) →  1 (from definition)

tanh (π) = 0.9963

In the expressions below, k = 2π/L

cosh k(d + y)
sinh kd

 =  

k(d+y)e  +  −k(d+y)e
2

kde  −  −kde
2

 =  
kde kye  +  −kde −kye

kde  −  −kde

Shallow water: As kd→0 , cosh k(d+y)→1, sinh kd→kd, so...
[cosh k(d+y)]/sinh kd →  1/kd

Deep water: As kd→π , [cosh k(d+y)]/sinh kd →  eky 

sinh k(d + y)
sinh kd

 =  

k(d+y)e  −  −k(d+y)e
2

kde  −  −kde
2

 =  
kde kye  +  −kde −kye

kde  −  −kde

Shallow water: As kd→0 , sinh k(d+y)→k(d+y), sinh kd→kd, so...
[sinh k(d+y)]/sinh kd →  (d + y)/d = height above bottom/depth

Deep water: As kd→π , [sinh k(d+y)]/sinh kd →  eky 



GG 454 March 31, 2002 1 1

Stephen Martel 3 0 - 1 1 University of Hawaii

Appendix
Derivation of the small amplitude wave equation
(from Sorenson, R.M., 1978, Basic coastal engineering: Wiley, New York,
227 p.)

              

y
H = 2A = wave height

u
v

η

ε
ζ

Particle�
orbit

Particle�
velocity

Still water�
level

x

y = -d

Water depth = +d

L

Small amplitude surface wave

Modified from Sorensen, 1978

Depth above�
bottom = d+y

The original solution is attributed to Airy (Airy, C.B., 1845, On tides and
waves, in Encyclopedia Metropolitana, London, p. 241-396).

η π= −





H x

L

t

T2
2cos (30A.1)

o r

η π σ= −( )H
kx t

2
2cos (30A.2)

where

k
L

wave number=
2π

 (  ) (30A.3)

σ
π

=
2
T

wave angular frequency (   ) (30A.4)

The flow normal to the sea bed is zero, so

v
y

at y d= = = −
∂φ
∂

0   (30A.5)

This is the first boundary condition.
The unsteady  Bernoulli equation for irrotational flow is
1
2

2 2 0u v gy
p

t
+



 + + + =

ρ
∂φ
∂

(30A.6)

where g = gravitational acceleration, p is the pressure, ρ  is fluid density,

and the last term is a dynamic pressure term associated with
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accelerations.  If the squares of the velocity terms are assumed to be
small relative to the other terms, and if the particle velocities are small
relative to the wave speed, then at the surface (i.e., at y = η), where the

pressure is taken as zero, the unsteady Bernoulli equation yields

y
g t

at y=
−

=
1 ∂φ

∂
η  (30A.7)

This yields the second boundary condition is at y=0,

η
∂φ
∂

=
−

=
1

0
g t

at y  (30A.8)

The velocity potential should vary with depth, and should have the same
cycle as the wave.  If the depth contribution (Y) can be separated from the
cyclic contribution (a common assumption in solving differential
equations), then the velocity potential φ would have the following form:
φ σ= −( )Y kx tsin (30A.9)

where Y = Y(y).  Upon insertion of this function into the Laplace equation

∂ φ

∂

∂ φ

∂

2

2

2

2
0

x y
+ = (30A.10)

one obtains

∂ σ

∂

∂ σ

∂

2

2

2

2
0

Y kx t

x

Y kx t

y

sin sin−( )( )
+

−( )( )
= (30A.11)

This simplifies first to

Y
kx t

x
kx t

Y

y

∂ σ

∂
σ

∂

∂

2

2

2

2
0

sin
sin

−( )( )
+ −( ) = (30A.12)

and then to

− −( ) + −( ) = − + =k Y kx t kx t
Y

y
k Y

Y

y

2
2

2
2

2

2
0sin sinσ σ

∂

∂

∂

∂
(30A.13)

The solution to this differential equation is well known

Y Aeky Be ky= + − (30A.14)
and can be verified by substitution into (30A.13).  Substituting this into
(30A.9) yields a general solution of the Laplace equation .

φ σ= + −



 −( )Aeky Be ky kx tsin (30A.15)

The two constants A and B now need to be solved for using the two
boundary conditions (30A.5) and (30A.8).  Inserting (30A.15) into (30A.5)
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v
Aeky Be ky kx t

y
at y d=

+ −



 −( )

 = = −
∂ σ

∂

sin
  0 (30A.16)

o r

v
k Ae kd Bekd kx t

y
=

− −



 −( )



 =

sin σ

∂
0 (30A.17)

The only way this can hold for all values of x and t is if

Ae kd Bekd− − = 0 (30A.18)
o r

A B
ekd

e kd
=

−
(30A.19)

Inserting this back into (30A.15) yields φ with one unknown constant

φ σ σ=
−

+ −







 −( ) =

−
+

−







 −( )B

ekd

e kd
eky Be ky kx t Bekd eky

e kd
e ky

ekd
kx tsin sin (30A.20)

o r
φ σ= + + − +



 −( )Bekd ek y d e k y d kx t( ) ( ) sin (30A.21)

The term in the large parentheses equals 2cosh[k(d+y)], so
φ σ= +( ) −( )Bekd k y d kx t2cosh ( ) sin (30A.22)

   Now the form of the water surface is

η π= −





H x

L

t

T2
2cos (30A.1)

So at t=0, x=0

η =
H

2
(30A.23)

Now the second boundary condition comes into play.

η
∂φ
∂

=
−

=
1

0
g t

at y  (30A.8)

So at t=0, x=0, and y=0
H

g t2
1

=
− ∂φ

∂
(30A.24)

The derivative on the right side of (30A.24) is found from (30A.22)
∂φ
∂

σ σ
t

Bekd kd kx t= ( ) −( ) −2cosh( ) cos ( ) (30A.25)

Substituting this back into (30A.24)
H

g
Bekd kd kx t

2
1

2=
− ( ) −( ) −cosh( ) cos ( )σ σ (30.A26)

This is solved for Bek d most readily where cos(kx-σ t) =1:
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gH

kd
Bekd

2 2σ cosh( )( )
= (30.A27)

This goes into (30A.22) to yield the expression for the velocity potential

φ σ=
[ ]

+( ) −( )gH

kd
k y d kx t

2cosh
cosh ( ) sin (30A.28)

The wave speed (or celerity) is a key term we wish to find.  We find it by
evaluating the vertical velocity at the surface in two ways.  First, using
the expression for the water height above still water level

η
∂φ
∂

=
−

=
1

0
g t

at y  (30A.8)

we obtain

v
t g t

at y= =
−

=
∂η
∂

∂ φ

∂

1 2

2
0  (30A.29)

Also the vertical velocity is given by

v
y

=
∂φ
∂

 (30A.30)

So at the surface

−
= =

1 2

2
0

g t y
at y

∂ φ

∂

∂φ
∂

  (30A.31)

Inserting (30A.28) , gives

− [ ]
+( ) −( )

=
[ ]

+( ) −( )
=

1
2

2
2

2
0

g

gH

kd
k y d kx t

t

gH

kd
k y d kx t

y
at y

∂ σ

∂

∂ σ

∂
cosh

cosh ( ) sin
cosh

cosh ( ) sin

  

(30A.32)
Taking the derivatives yields

σ
σ σ

2

2 2
0

g

gH

kd
k y d kx t k

gH

kd
k y d kx t at y

cosh
cosh ( ) sin

cosh
sinh ( ) sin   

[ ]
+( ) −( ) =

[ ]
+( ) −( ) =

(30A.33)
Now set y= 0, and solve for φ. Many terms can be dropped from both sides.

σ2 = − =g
k kd

k d
gk kd

sinh( )
cosh ( )

 tanh( ) (30A.34)

Now the wave speed C = L/T = σ/k, so

C
gk kd

k

g

k
kd

gL d

L
= = =

tanh( )
tanh( ) tanh

2
2

π
π

(30A.34)


