```
function lab14(b,a)
 % function lab14(b,a). Draws a profile of predicted displacement at
 % the ground surface as a function of distance from a long vertical
 % strike-slip fault with constant slip using a screw dislocation model.
 % Parameter "b" is the slip across the fault (in meters).
 % The slip is TWICE the fault-parallel component displacement
 % along one of the fault walls!
 % Parameter "a" is the depth of the lower edge of the dislocation (in km).
 % Both parameters "b" and "a" must be placed between parentheses.
 % For example, to start and just see the data type
 % lab12(0,0)
 % To get model curves you need to provide non-zero values for "b" and "a".
 % If your curve is below the data, the slip and/or fault depth is too low.
 % If your curve is above the data, the slip and/or fault depth is too high.
 % Plots will be superposed. To clear the screen to start over type
 % The surface displacements are elastic displacements calculated
 % using a screw dislocation solution (see lecture 23).
 % The displacements are calculated along a horizontal plane
 % that bisects a vertical screw dislocation in an infinite body.
 % This dislocation extends from a depth of "a" km below the surface
 % to "a" km above the surface.
 % The horizontal plane represents the surface of a half-space,
 % and here that is the ground surface.
 % Slip across the dislocation results in no tractions on this
 % plane (i.e., no normal and shear stresses act ON this plane),
 % so the displacements on or below this plane are appropriate
 % for those in the Earth around the central portion of a long vertical
 % strike slip fault with a constant slip.
 % Data for fault-parallel displacements (with error bars) are from the
 % 1906 San Francisco earthquake as reported by Pollard and Segall (1987).
 % The reference frame has the x-axis vertical and in the plane of the fault.
 % The y-axis is normal to the fault and at the ground surface.
 % The z-axis is horizontal and parallels fault strike.
 % Estimate the slip to +/- 1 meter and the depth of faulting to +/- 5 km.
 % Set the grid to calculate displacements on
y = 0:0.1:14;
x = zeros(size(y));
 % Calculate displacement w parallel to the fault
w = (b/(2*pi)) * (atan2(y,(x-a)) - atan2(y,(x+a)));
% 1906 Displacement data
y6 = [0.18, 0.18, 0.18];
y5 = [0.50, 0.50, 0.50];
y7 = [1.48, 1.48, 1.48];
y4 = [3.65, 3.65, 3.65];
y3 = [3.92, 3.92, 3.92];
y8 = [5.72, 5.72, 5.72];
y9 = [6.40, 6.40, 6.40];
y10= [6.71, 6.71, 6.71];
y11= [6.82, 6.82, 6.82];
y12= [7.66, 7.66, 7.66];
y2 = [11.26, 11.26, 11.26];
y1 = [13.56, 13.56, 13.56];
w6 = [2.05, 2.45, 2.87];
w5 = [2.11, 2.50, 2.91];
w7 = [1.69, 2.09, 2.50];
w4 = [1.43, 1.83, 2.23];
w3 = [1.38, 1.79, 2.19];
w8 = [1.15, 1.55, 1.95];
w9 = [0.97, 1.36, 1.79];
w10 = [1.08, 1.48, 1.89];
w11 = [1.28, 1.70, 2.10];
w12 = [1.05, 1.45, 1.85];
w2 = [0.60, 1.00, 1.41];
w1 = [0.60, 1.00, 1.41];
 % 1906 Displacement data
 % Plot 1906 data
figure(1)
plot ( y6, w6, '-', y5, w5, '-', y7, w7, '-', y4, w4, '-', y3, w3, '-', y8, w8, '-', ...
```