GG303 Lecture 28 11/26/07 1

FOLDED SURFACES & CLASSIFICATIONS

| Main Topics
A Curvature at a point along a curved surface
B Fold nomenclature and classification schemes
C Interference of folds

D Superposition of folds

Il Curvature at a point along a curved surface

A Local equation of a plane curve_in a tangential reference frame

y
Portion of At x= 0,y = 0.
Local a plane curve
tangent b At x= 0,y = 0.
reference X

frame —

Express the plane curve as a power series of linearly independent terms:

1 y= [ +Cx7+ C_,x":l + [Coxo] + [Clx' +C,x° + Cyx’ + ] .

As y is finite at x= 0, all the coefficients for terms with negative exponents
must be zero. At x= 0, all the terms with positive exponents equal zero.
Accordingly, since y = 0 at x = 0, C, = 0. So equation (1) simplifies:

2 y=Cx'+C,x’+Cx*+... .

The constraint y’ = 0 at x = O is satisfied at x = 0 only if C; =0

3 y=Cx"+2C,x'+3C,x* +...=0.

4 y=C,x’+Cyx’+.... Now examine the second derivative:
5 y"'=2C,+6C,x'+.... Only the first term contributes as x — 0, hence
6 lim y = C,x°

At x = 0, x is the direction of increasing distance along the curve, so
7 limK =[y(s)|=[y(x)|=2C,
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B | | . E E . ial ref E
A
Z Local tangent reference frame

-~ z=normal to surface
X,y axes in tangent plane

~ Plane curve: L
intersection. of surface
~withyzplane f

~ Plane curve:
intersection of surface
with xz plane

In this local reference frame, at (x= 0,y =0), z =0, 0z/ox = 0, 9z/9y = O.

Plane curves locally all of second order pass through a point on a surface z =
f(x,y) and contain the surface normal, so any continuous surface is locally
2nd order. The general form of such a surface in a tangential frame is

8 z=Ax"+Bxy+Cy’,

where at (x= 0, y = 0), z = 0, and the xy-plane is tangent to the surface.
This is the equation of a paraboloid:_near a point all surfaces are second-
Example: curve (normal section) in the arbitrary plane y = mx

9 lim z=Ax2+Bx(mx)+C(mx)2 =(A+Bm+Cm2)x2.

x—0,y—0
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C Directions and magnitudes of principal curvatures for a surface

Consider the family of curves (i.e., normal sections) formed by a surface
intersecting a series of planes through the surface normal at a point (see
diagram above). The curve with the most positive tangent a short distance
from the point of tangency (the local origin), as measured in a tangential
reference frame, has a unit tangent that increases at the greatest rate
(i.e., has the greatest curvature). The curve with the least positive tangent
a short distance from the local origin has a unit tangent that increases at
the smallest rate (i.e., has the least curvature). Near the point of tangency,
the values of dx and dy determine the direction of various curves. We seek
the direction, given by dx and dy, for which the curvature will be greatest
(see diagram below, where dr is an incremental distance from the origin in
the tangent plane and dr? = dx? + dy?).

‘ High curvature
Steep slope atr=dr
. Low curvature
Small slope at r =dr
—

dr r
Cross section containing the normal to the surface (z). The intersection of
the cross section with the surface yields a plane curve called a normal
section. The r-direction is in the tangent plane, with z = 0 at r = 0. The first
derivative at a small distance from the point of tangency will equal the
second derivative multiplied by the distance dr.

The first partial differentials of a function z(x,y) represent the change in z
(i.e., dz) for a given change in x (i.e., dx) or y (i.e., dy):

2 2 &d
10a a—fdx+azdy= (¢2)
ox oxady o0x

2 2 &d
7z dx+a—§dy= (42)
aydx y y

10b
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In the tangential frame dz = z, so (10a) and (10b) can be rewritten as

2 2
11a a—idx Iz dy _ &
ox oxdy ox
2 2
11b ﬁdx —idy _ &
dydx ay dy
These can be written in matrix form:
Pz dz az _Stress: traction equivalent
12a &XZ O'JXO"_y dx - ox O ny n, _ ’1;
(?_2Z (9_25 dy % GXY ny n)’ ’I;
dydx  dy

The first derivatives of z (on the right side of equation 12a) at a small
distance dr from the point of tangency equals second derivatives multiplied
by dr, and the second derivative in a tangential reference frame is a normal
curvature. Accordingly, equation (12a) can be rewritten in the form Ax = Ax:

i’z 9z Stress: traction equivalent
2 dx dx Gxx er nx nx
J°z Jd°z ||dy dy o, o,|n, n,
dydx  dy’

directions of the principal curvatures. An analogy between principal

curvatures and principal stresses is even more apparent if one writes

0°z/0x0y; as ki:

14 k. ki, dx} k[dxl Stress: traction equivalent
a ==
b ks oo ol
O-Xy ny ny n)'

Since the square matrix in equations (13a) and (14a) is symmetric, the

principal curvatures are orthogonal (see lecture notes on symmetric
matrices). The product of the principal curvatures is the Gaussian
curvature (K = k;k,), and their mean is the mean curvature (H = [k;+k,]/2).
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D Euler’s equation on normal curvature
By using the material in the previous section and in the notes on symmetric
matrices, equation (8) can be re-written to eliminate the xy-term by using
the reference frame of the principal curvatures and surface normal:

(15) z=(1/2) (A*x*2 + C*y*?),

where x* and y* are the directions of the principal curvatures k; and k5,
respectively. If we let x* = r cos6 and y* = r sinf, we obtain the equation of
any normal section curve in the direction of 6

(16) z=(1/2) (A*cos?6 + B*sin?0)r?

The second derivative of z with respect to r gives the normal curvature
(17) ¢?z/ar? = A*cos?0 + B*sin?0

The r-direction is tangent to the curve at the point we are evaluating the
curvature, so the r- and s-directions coincide, so the second derivative of z

with respect to r gives the normal curvature

(18) k = k; cos?0 + k, sin?0
This is Euler’s equation on normal curvature, developed in 1760. It shows

that for any direction the normal curvature is bracketed by the maximum
curvature and the minimum curvature.
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Il Fold nomenclature and classification schemes

A Emerging fold terminology and classification
1 Classification of Lisle and Toimil, 2007%*)

K < 0 (Anticlastic)
Principal curvatures

have opposite signs

K > 0 (Synclastic)
Principal curvatures

have same signs

H < 0 (N) antiform

Anticlastic antiform
k-| > O, k2< O, |k2| > |k1|
“Saddle on a ridge”

Synclastic antiform
ki<0, k<O

H> 0 (U) synform

Anticlastic synform
ki> 0, ko< O, lk;1 > lk,l

“Saddle in a valley”

Synclastic synform
ki>0,k,>0

e * Lisle and Toimil (2007) consider convex curvatures as positive
Fold Classfication Scheme of Lisle and Toimil (2007)

Anticlastic antiform: k1 > 0, k2 < 0, [k2l > Ik1l

SRR

Stephen Martel

28-6

Synclastic antiform: k1 <0, k2 <0
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2 Classification of Mynatt et al., 2007

K < O (saddle) K=0 K > 0 (bowl or dome)
Principal curvatures Principal curvatures have
have opposite signs same signs

H < 0 (N) | Antiformal saddle Antiform Dome

Antiform k1 > O, k2< O, |k2| > Ik]l k-| = O, k2< 0 k1 < O, k2< 0
“Saddle on a ridge”

H=0 Perfect saddle Plane Not possible
k1>0, k2<0, |k2|=|k1| k1=0, k2=0

H> 0 (U) | Synformal saddle Synform Basin
Synform k] > O, k2< O, |k1| > Ik2| k1 > 0, k2= 0 k1 > 0, k2> 0

“Saddle in a valley”

* Mynatt et al., (2007) consider convex curvatures as positive
Fold Classfication Scheme of Mynat et al. (2007)

Antiformal saddle: k1> 0, k2 <0, k2| > k1l Antiform (cylindrical): k1 =0, k2 <0 Dome: k1<0,k2<0

At
7 AMSARY
it \\\“{‘{\\\“\‘3\‘:\\\\\

7] \\
I

Plane: k1 =0,k2=0 Not Possible

Synform (cylindrical): k1 > 0, k2 = 0 Basin: k1 >0, k2> 0

77 ”
L7, Y iy
| "¢ I II
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function folds3d

% Prepares figures of 3D folds

x =-1:0.1:1;

Yy = X;

[X,Y] = meshgrid(x,y);

% Classification scheme of Lisle and Toimil (2007)
figure (1)

% Anticlastic antiform: k1 > 0, k2 < 0, |k2| > |k1|

kl =1; k2 = =-2;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(2,2,1)

surf(X,Y,2)

title ('Anticlastic antiform: k1 > 0, k2 < 0, |k2| > |k1|")

% Synclastic antiform: k1l < 0, k2 < 0

kl = =-1; k2 = =2;

Z = 0.5%(k1l*X."2 + k2*Y."2);

subplot(2,2,2)

surf(X,Y,2)

title ('Synclastic antiform: k1l < 0, k2 < 0 ')

% Anticlastic synform: k1 > 0, k2 < 0, |k1| > |k2|

kl = 2; k2 = -1;

Z = 0.5%(kl*X."2 + k2*Y."2);

subplot(2,2,3)

surf(X,Y,2)

title ('Anticlastic synform: k1 > 0, k2 < 0, |k1| > |k2| ")

% Anticlastic antiform: k1 > 0, k2 > 0

kl = 2; k2 = 1;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(2,2,4)

surf(X,Y,2)

title ('Anticlastic antiform: k1 > 0, k2 > 0 ')

e e e e e D22 22

% Classification scheme of Mynatt et al. (2007)
figure (2)

% Antiformal saddle: k1 > 0, k2 < 0, |k2| > |k1]

kl =1; k2 = =-2;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(3,3,1)

surf(X,Y,2)

title ('Antiformal saddle: k1 > 0, k2 < 0, |k2| > |k1| ")

Antiform (cylindrical): k1l = 0, k2 < 0

kl = 0; k2 = =-2;
Z = 0.5%(k1*X."2 + k2*Y."2);
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subplot(3,3,2)
surf(X,Y,2)
title ('Antiform (cylindrical): k1 =0, k2 < 0'")

% Dome: kl < 0, k2 < 0

kl = =-1; k2 = =2;

Z = 0.5%(k1*X."2 + k2*Y."2);
subplot(3,3,3)

surf(X,Y,2)

title ('Dome: k1l < 0, k2 < 0")

% Perfect saddle: k1 > 0, k2 < 0, |k2| = |k1|

kl =1; k2 = -1;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(3,3,4)

surf(X,Y,2)

title ('Perfect saddle: k1l > 0, k2 < 0, |k2| = |k1]|")

% Plane: k1l = 0, k2 =0

kl = 0; k2 = 0;

Z = 0.5%(k1*X."2 + k2*Y."2);
subplot(3,3,5)

surf(X,Y,2)

title ('Plane: k1l = 0, k2 = 0")

% Not Possible
subplot(3,3,6)
title ('Not Possible')

% Synformal saddle: k1 > 0, k2 < 0, |k1| > |k2]

kl = 2; k2 = -1;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(3,3,7)

surf(X,Y,2)

title ('Synformal saddle: k1l > 0, k2 < 0, |k1l| > |k2]|")

% Synform (cylindrical): k1 > 0, k2 =0

kl =1; k2 = 0;

Z = 0.5%(k1*X."2 + k2*Y."2);

subplot(3,3,8)

surf(X,Y,2)

title ('Synform (cylindrical): k1 > 0, k2 =0")

% Basin: k1 > 0, k2 > 0

kl = 2; k2 = 1;

Z = 0.5%(k1*X."2 + k2*Y."2);
subplot(3,3,9)

surf(X,Y,2)

title ('Basin: k1l > 0, k2 > 0")
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B “Traditional” Fold terminology and classification

1

2
3
4
5

Hinge point: point of local maximum curvature.

Hinge line: connects hinge points along a given layer.

Axial surface: locus of hinge points in all the folded layers.

Limb: surface of low curvature.

Cylindrical fold: a surface swept out by moving a straight line

parallel to itself

a Fold axis: line that can generate a cylindrical fold

b Parallel fold: top and bottom of layers are parallel and layer
thickness is preserved (assumes bottom and top of layer
were originally parallel).

¢ Curved parallel fold: curvature is fairly uniform.

d Angular parallel fold: curvature is concentrated near the hinges
and the limbs are relatively planar.

e Non-parallel fold: top and bottom of layers are not parallel; layer
thickness is not preserved (assumes bottom and top of
layer were originally parallel). Hinges typically thin and limbs
thicken.
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Limbs and Hinges along Folds Fig. 27.4

Fositive curvature = concave up

MNegative curvature = concave down
Limb
i inflection point;

Radius of curvature is small{est) at the hinge, larg(est) on the limbs

\ #ml:tluda
| {

No hinge points
in this example!

Curved Parallel Fold

Angular Parallel Fold
Wavelength

3
L3 Limb Limb  amplitude
= o,

Stephen Martel 28-11 University of Hawaii



GG303 Lecture 28

OO W wmm

Non-cylindrical fold example: dome

Anticlines, synclines, antiforms, synforms, and monoclines
Kinks: folds with sharp, angular hinge regions

"Tightness" of folds
Classification by orientation of axial plane and plunge of fold axis

11/26/07

12

E Symmetrical folds vs. asymmetrical folds
lI Ramsay's classification scheme; single-layer folds in profile
A Relates the curvature of the inner and outer surfaces of a fold.

B Dip isogons: lines that connect points

of equal dip

Fold class

Curvature (C)

Comment

Cinner > Couter

Dip isogons converge

1A Orthogonal thickness on
limbs exceeds thickness at
hinge; uncommon

1B Parallel folds

1C Orthogonal thickness on

limbs is less than thickness at
hinge

2 Cinner = Couter Dip isogons are parallel
Class 2 = similar folds)
3 Cinner < Couter Dip isogons are diverge

Class 1C (or 1B) folds commonly are stacked with class 3 folds.

Stephen Martel
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IV Mechanical interaction of folds (See Fig. 9-57 of Suppe)
A Layers far apart will not interact as they fold
B Layers of similar properties that are close together will tend to fold as
a single fold
C Layers "near" each other will interact
V Superposition of folds
A Can produce highly complicated geometries
B Common in metamorphic rocks
C "Demonstration" of z- and s- folds (parasitic)
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NOMEMNCLATURE FOR FOLDS Fig. 28.1
W
L.
/ Posifive curvature = concave up
Hinge Negative curvature = concave down
Limb
. ki Inflection point;
R curvature = 0.
&

Hadius of curvature is small(est) at the hinge, larg(est) on the limbs

Symmetrical Folds

k< Wavelength >

Enuﬂomny

Amplitude

v

surface

—
§
1

Enveloping surface

Asymmefrical Folds

Enveloping surface

Enveloping surface Hinge — Trough
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ﬁ NOMENCLATURE FOR FOLDS Fig. 28.2

Antidine F__

honocline

Anticline

X Syncline: fold where rocks become younger towards axial surface
){ Anticline: fold where rocks become older towards axial surface
Synform: fold where limbs dip towards axial surface
Antitorm: told where limbs dip way from axial surface

){ Monocline: gentle anticline-syncline pair with horizontal outer limbs
ﬁ Overturned folds

y Overtumed syncline: one limb of syncline is overumed

}/ Overtumed anticdine: one limb of anticline: is overturned
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Ramsay's Fold Classification Fig. 28.3

Dip Isogon: a line that connects points of equal dip on the top and bottom
of a folded layer

Class 1: Dip isogons converge towards axial surface;
Cinner> Couter

1A 1B 1C
Limbs thicker Layer tickness Limbs thinner
than hinges is constant than hinges
' (parallel folds)

Axial
surface

Dip
isogon

Class 2: Dip isogons parallel axial surface (similar folds);
Cinner = Couter

Inner and outer fold surtfaces
have exactly the same shape

Translate outer fold surface
parallel to axial surface to match
inner fold surface

C ]

Class 3: Dip isogons diverge from axial surface;
Cinner < Couter

Class 3 conditions can't

extend "forever” otherwise

the inner and outer fold surfaces
would cross
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Terms for Describing the Tightness of Folds  Fig. 284

Interlimb angle Description of fold
180° - 120° Gente
120° - 70° Open
70% - 30° Close
30°-Q° Tight
"o Isoclinal
Negatve Mushroom
Gentle o
120
70°
Open
30" 3p°
Close Tight
Isoclinal
(limbs are parallel)
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Fold Classifications Fig. 28.5
(modified from Ragan, 1973, Figure 7.10)

Based on direction of fold concavity, axial suface orientation, and fold axis orientation

Foid
Vertic axis

Fold opens horizontally
Vertical axial surface

Vertical fold axis

Reclined

Upright plunging

Fold opens up of down
Vertical axial suface

Fold opans sideways

Inclined plunging Horizontal axial surlace

Horizontal fold axis Horizontal fold axis
Upright horizontal Inclined horizontal Recumbent

First modifier {e.q., "upright™) describes onentation of axial surface
Second modifier (e g, "horizontal™) desaribes orientation of fold axis
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