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FOLDED SURFACES & CLASSIFICATIONS

I Main Topics

A Curvature at a point along a curved surface

B Fold nomenclature and classification schemes

C Interference of folds

D Superposition of folds

II Curvature at a point along a curved surface

A Local equation of a plane curve in a tangential reference frame

       

At x= 0, y = 0.

At x= 0, y’ = 0.

Express the plane curve as a power series of linearly independent terms:
1

  

€ 

y = K+ C−2x
−2 + C−1x

−1[ ] + C0x
0[ ] + C1x

1 + C2x
2 + C3x

3 +K[ ] .

As y is finite at x= 0, all the coefficients for terms with negative exponents

must be zero.  At x= 0, all the terms with positive exponents equal zero.

Accordingly, since y = 0 at x = 0, C0 = 0.  So equation (1) simplifies:
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y = C1x
1 + C2x

2 + C3x
3 +K .

The constraint y’ = 0 at x = 0 is satisfied at x = 0 only if C1 = 0

3   
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′ y = C1x
0 + 2C2x

1 + 3C3x
2 +K = 0 .

4   
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y = C2x
2 + C3x

3 +K . Now examine the second derivative:

5   
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′ ′ y = 2C2 + 6C3x
1 +K . Only the first term contributes as x → 0, hence

6
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lim
x→0

y = C2x
2.

So near a point of tangency all plane curves are second-order (parabolic).

At x = 0, x is the direction of increasing distance along the curve, so
7
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lim
x→0

K = y(s ′ ′ ) = y(x ′ ′ ) = 2C2
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B Local equation of a surface in a tangential reference frame

In this local reference frame, at (x= 0, y = 0), z = 0, ∂z/∂x = 0, ∂z/∂y = 0.

Plane curves locally all of second order pass through a point on a surface z =

f(x,y) and contain the surface normal, so any continuous surface is locally

2nd order.  The general form of such a surface in a tangential frame is

8

€ 

z = Ax 2 + Bxy + Cy 2 ,

where at (x= 0, y = 0), z = 0, and the xy-plane is tangent to the surface.

This is the equation of a paraboloid: near a point all surfaces are second-

order elliptical or hyperbolic paraboloids.

Example: curve (normal section) in the arbitrary plane y = mx
9
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lim
x→0,y→0

z = Ax 2 + Bx mx( ) + C mx( )2 = A + Bm + Cm2( )x 2.



GG303 Lecture 28 11/26/07 3

Stephen Martel 28-3 University of Hawaii

C Directions and magnitudes of principal curvatures for a surface

Consider the family of curves (i.e., normal sections) formed by a surface
intersecting a series of planes through the surface normal at a point (see
diagram above).  The curve with the most positive tangent a short distance
from the point of tangency (the local origin), as measured in a tangential
reference frame, has a unit tangent that increases at the greatest rate
(i.e., has the greatest curvature).  The curve with the least positive tangent
a short distance from the local origin has a unit tangent that increases at
the smallest rate (i.e., has the least curvature).  Near the point of tangency,
the values of dx and dy determine the direction of various curves.  We seek
the direction, given by dx and dy, for which the curvature will be greatest
(see diagram below, where dr is an incremental distance from the origin in
the tangent plane and dr2 = dx2 + dy2).

Cross section containing the normal to the surface (z).  The intersection of
the cross section with the surface yields a plane curve called a normal
section.  The r-direction is in the tangent plane, with z = 0 at r = 0. The first
derivative at a small distance from the point of tangency will equal the
second derivative multiplied by the distance dr.

The first partial differentials of a function z(x,y) represent the change in z
(i.e., dz) for a given change in x (i.e., dx) or y (i.e., dy):

10a
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∂ 2z
∂x 2

dx +
∂ 2z
∂x∂y

dy =
∂ dz( )
∂x

10b
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∂ 2z
∂y∂x

dx +
∂ 2z
∂y 2

dy =
∂ dz( )
∂y
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In the tangential frame dz = z, so (10a) and (10b) can be rewritten as

11a
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∂ 2z
∂x 2

dx +
∂ 2z
∂x∂y

dy =
∂z
∂x

11b
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∂ 2z
∂y∂x

dx +
∂ 2z
∂y 2

dy =
∂z
∂y

These can be written in matrix form:                 
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              Stress: traction equivalent
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σ xx σ yx

σ xy σ yy

 

 
 

 

 
 
nx
ny
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 
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The first derivatives of z (on the right side of equation 12a) at a small
distance dr from the point of tangency equals second derivatives multiplied
by dr, and the second derivative in a tangential reference frame is a normal
curvature.  Accordingly, equation (12a) can be rewritten in the form Ax = λx:

13a
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Solving equation (13a) yields the maximum and minimum curvatures and their
directions (as measured in the tangent plane).  The square matrix on the left
side of equation (13a) is symmetric because ∂2z/∂x∂y = ∂2z/∂y∂x.  Its
eigenvalues (i.e., the principal curvatures) are given by the term k on the
right side of equation (13a).  Its eigenvectors, given by dx and dy, are the
directions of the principal curvatures.  An analogy between principal
curvatures and principal stresses is even more apparent if one writes
∂2z/∂xi∂yj as kij:
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Since the square matrix in equations (13a) and (14a) is symmetric, the
principal curvatures are orthogonal (see lecture notes on symmetric
matrices).  The product of the principal curvatures is the Gaussian
curvature (K = k1k2), and their mean is the mean curvature (H = [k1+k2]/2).
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D Euler’s equation on normal curvature
By using the material in the previous section and in the notes on symmetric
matrices, equation (8) can be re-written to eliminate the xy-term by using
the reference frame of the principal curvatures and surface normal:

(15) z = (1/2) (A*x*2 + C*y*2),
where x* and y* are the directions of the principal curvatures k1 and k2,
respectively.  If we let x* = r cosθ and y* = r sinθ, we obtain the equation of
any normal section curve in the direction of θ

(16) z = (1/2) (A* cos2 θ  + B* sin2 θ)r2

The second derivative of z with respect to r gives the normal curvature

(17) ∂2z/∂r2 = A* cos2 θ  + B* sin2 θ

The r-direction is tangent to the curve at the point we are evaluating the
curvature, so the r- and s-directions coincide, so the second derivative of z
with respect to r gives the normal curvature

(18) k  = k1 cos2 θ  + k2 sin2 θ

This is Euler’s equation on normal curvature, developed in 1760.  It shows
that for any direction the normal curvature is bracketed by the maximum
curvature and the minimum curvature.
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II Fold nomenclature and classification schemes
A Emerging fold terminology and classification

1 Classification of Lisle and Toimil, 2007*)

K < 0 (Anticlastic)

Principal curvatures

have opposite signs

K > 0 (Synclastic)

Principal curvatures

have same signs

H < 0 (∩) antiform Anticlastic antiform

k1 > 0, k2 < 0, |k2| > |k1|

“Saddle on a ridge”

Synclastic antiform

k1 < 0, k2 < 0

H > 0 (∪) synform Anticlastic synform

k1 > 0, k2 < 0, |k1| > |k2|

“Saddle in a valley”

Synclastic synform

k1 > 0, k2 > 0

• * Lisle and Toimil (2007) consider convex curvatures as positive
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2 Classification of Mynatt et al., 2007

K < 0 (saddle)

Principal curvatures

have opposite signs

K = 0 K > 0 (bowl or dome)

Principal curvatures have

same signs

H < 0 (∩)

Antiform

Antiformal saddle

k1 > 0, k2 < 0, |k2| > |k1|

“Saddle on a ridge”

Antiform

k1 = 0, k2 < 0

Dome

k1 < 0, k2 < 0

H = 0 Perfect saddle

k1 > 0, k2 < 0, |k2| = |k1|

Plane

k1 = 0, k2 = 0

Not possible

H > 0 (∪)

Synform

Synformal saddle

k1 > 0, k2 < 0, |k1| > |k2|

“Saddle in a valley”

Synform

k1 > 0, k2 = 0

Basin

k1 > 0, k2 > 0

• Mynatt et al., (2007) consider convex curvatures as positive
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function folds3d

% Prepares figures of 3D folds
x = -1:0.1:1;
y = x;
[X,Y] = meshgrid(x,y);

% Classification scheme of Lisle and Toimil (2007)
figure (1)

% Anticlastic antiform: k1 > 0, k2 < 0, |k2| > |k1|
k1 = 1; k2 = -2;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(2,2,1)
surf(X,Y,Z)
title ('Anticlastic antiform: k1 > 0, k2 < 0, |k2| > |k1|')

% Synclastic antiform: k1 < 0, k2 < 0
k1 = -1; k2 = -2;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(2,2,2)
surf(X,Y,Z)
title ('Synclastic antiform: k1 < 0, k2 < 0 ')

% Anticlastic synform: k1 > 0, k2 < 0, |k1| > |k2|
k1 = 2; k2 = -1;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(2,2,3)
surf(X,Y,Z)
title ('Anticlastic synform: k1 > 0, k2 < 0, |k1| > |k2| ')

% Anticlastic antiform: k1 > 0, k2 > 0
k1 = 2; k2 = 1;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(2,2,4)
surf(X,Y,Z)
title ('Anticlastic antiform: k1 > 0, k2 > 0 ')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Classification scheme of Mynatt et al. (2007)
figure (2)

% Antiformal saddle: k1 > 0, k2 < 0, |k2| > |k1|
k1 = 1; k2 = -2;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,1)
surf(X,Y,Z)
title ('Antiformal saddle: k1 > 0, k2 < 0, |k2| > |k1| ')

% Antiform (cylindrical): k1 = 0, k2 < 0
k1 = 0; k2 = -2;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
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subplot(3,3,2)
surf(X,Y,Z)
title ('Antiform (cylindrical): k1 = 0, k2 < 0')

% Dome: k1 < 0, k2 < 0
k1 = -1; k2 = -2;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,3)
surf(X,Y,Z)
title ('Dome: k1 < 0, k2 < 0')

% Perfect saddle: k1 > 0, k2 < 0, |k2| = |k1|
k1 = 1; k2 = -1;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,4)
surf(X,Y,Z)
title ('Perfect saddle: k1 > 0, k2 < 0, |k2| = |k1|')

% Plane: k1 = 0, k2 = 0
k1 = 0; k2 = 0;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,5)
surf(X,Y,Z)
title ('Plane: k1 = 0, k2 = 0')

% Not Possible
subplot(3,3,6)
title ('Not Possible')

% Synformal saddle: k1 > 0, k2 < 0, |k1| > |k2|
k1 = 2; k2 = -1;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,7)
surf(X,Y,Z)
title ('Synformal saddle: k1 > 0, k2 < 0, |k1| > |k2|')

% Synform (cylindrical): k1 > 0, k2 = 0
k1 = 1; k2 = 0;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,8)
surf(X,Y,Z)
title ('Synform (cylindrical): k1 > 0, k2 = 0')

% Basin: k1 > 0, k2 > 0
k1 = 2; k2 = 1;
Z = 0.5*(k1*X.^2 + k2*Y.^2);
subplot(3,3,9)
surf(X,Y,Z)
title ('Basin: k1 > 0, k2 > 0')
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B “Traditional” Fold terminology and classification

1 Hinge point: point of local maximum curvature.

2 Hinge line: connects hinge points along a given layer.

3 Axial surface: locus of hinge points in all the folded layers.

4 Limb: surface of low curvature.

5 Cylindrical fold: a surface swept out by moving a straight line

parallel to itself

a Fold axis: line that can generate a cylindrical fold

b Parallel fold: top and bottom of layers are parallel and layer

thickness is preserved (assumes bottom and top of layer

were originally parallel).

c Curved parallel fold: curvature is fairly uniform.

d Angular parallel fold: curvature is concentrated near the hinges

and the limbs are relatively planar.

e Non-parallel fold: top and bottom of layers are not parallel; layer

thickness is not preserved (assumes bottom and top of

layer were originally parallel).  Hinges typically thin and limbs

thicken.
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E Non-cylindrical fold example: dome
B Anticlines, synclines, antiforms, synforms, and monoclines
B Kinks: folds with sharp, angular hinge regions
C "Tightness" of folds
D Classification by orientation of axial plane and plunge of fold axis
E Symmetrical folds vs. asymmetrical folds

III Ramsay's classification scheme; single-layer folds in profile
A Relates the curvature of the inner and outer surfaces of a fold.
B Dip isogons: lines that connect points of equal dip

Fold class Curvature (C) Comment
I Cinner > Couter Dip isogons converge

1A Orthogonal thickness on
limbs exceeds thickness at
hinge; uncommon

1B Parallel folds
1C Orthogonal thickness on

limbs is less than thickness at
hinge

2 Cinner = Couter Dip isogons are parallel
Class 2 = similar folds)

3 Cinner < Couter Dip isogons are diverge
Class 1C (or 1B) folds commonly are stacked with class 3 folds.
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IV Mechanical interaction of folds (See Fig. 9-57 of Suppe)
A Layers far apart will not interact as they fold
B Layers of similar properties that are close together will tend to fold as

a single fold
C Layers "near" each other will interact

V Superposition of folds
A Can produce highly complicated geometries
B Common in metamorphic rocks
C "Demonstration" of z- and s- folds (parasitic)
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