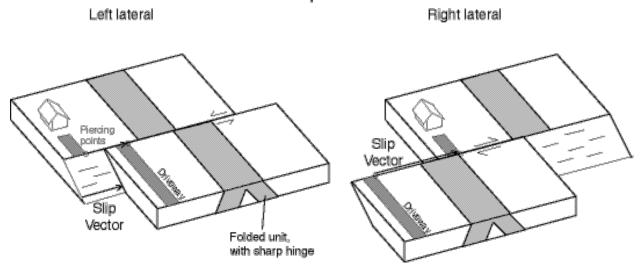
FAULTS (I)

- I Main Topics
 - A Why are faults important?
 - B Observations of faults
 - C Geologic classification of faults
- II Why are faults important?
 - A Faults generate earthquakes
 - B Faults reveal how the earth has deformed through time
 - C Faults (including deformation bands) play critical roles in fluid transport in the earth's crust (e.g., water, magma, petroleum & natural gas, and hydrothermal fluids [ore minerals])
- D Faults are zones of weakness to account for in engineering projects III Observations of faults
 - A Gross geometry
 - 1 Thin relative to their in-plane dimensions
 - 2 Bounded in extent
 - 3 Grossly planar (usually)
 - B Relative displacement (slip) of opposing fault walls is parallel to the fault
 - C Structural details of faults
 - 1 Overall structure: ~planar segments
 Affects internal structure & fault behavior
 - 2 Internal structure: complicated fracture pattern
 - 3 Common for faults to be paralleled by other fractures. Typical *assumption* is that fault slip causes fault-parallel fractures to form (note that cross-cutting relationships don't help out).
 - 4 Common for hydrothermal/geothermal activity to occur near ends of fault segments (San Andreas, Wasatch faults)
 - D Composition
 - 1 Breccia
 - 2 Fault gouge
 - 3 Mineralization


E Kinematics

- 1 Cut adjacent material; faulting post-dates the host rock
- 2 *Relative* (not absolute) *displacement* (slip) of originally neighboring points *is parallel to the fault*; relative displacement may or may not be small relative to fault length
- F Surface textures of faults
 - 1 *Slickensides* (polished surfaces)
- 2 *Slickenlines* (striations); parallel to most recent(?) slip vector IV Geologic classification of faults (see Fig. 24.1)
 - A Geologic classification
 - 1 Based on orientation of slip vector relative to the strike and dip of a fault
 - 2 Slip determined by the relative displacement of **piercing points** that were originally neighbors on opposite faces of a fault.
 - 3 Piercing points mark intersection of a line with a fault
 - 4 The slip vector connects offset piercing points
 - 5 Slip is not the same as "movement" or "displacement"
 - B **Strike-slip fault**: slip vector is predominantly horizontal (i.e., parallel or anti-parallel to the line of strike)
 - 1 Right lateral: in map view *across* a fault, a marker is offset to the right
 - 2 Left lateral: in map view across a fault, a marker is offset to the right
 - C Dip-slip fault: slip vector is parallel (or anti-parallel) to dip
 - 1 Normal fault: hanging wall moves down relative to footwall
 - 2 Thrust fault: hanging wall moves up relative to footwall *Deeper (older) rocks thrust over shallower (younger) rocks*
 - D Oblique-slip: combination of strike slip and dip slip
 - E Slip vs. Separation (see Fig. 24.2)
 - 1 Slip: True relative displacement of originally neighboring points
 - 2 Separation: *Apparent* relative displacement of an offset feature as seen in a map or a cross-section
 - F The amount and direction of slip can change with time and/or position along a fault!

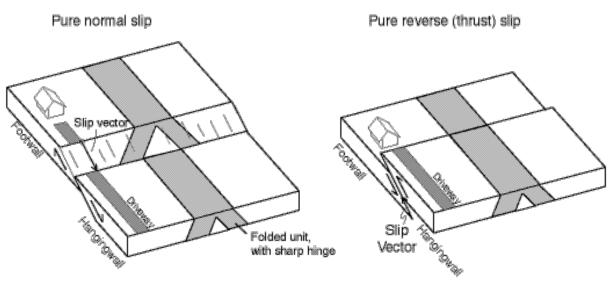
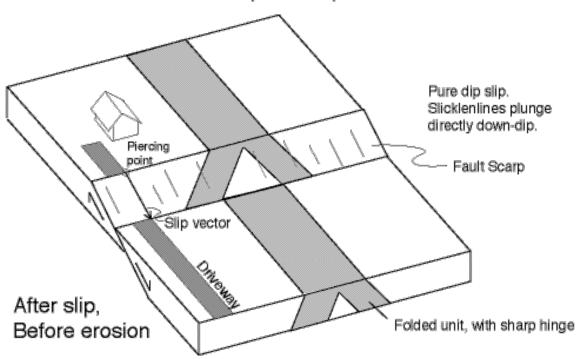
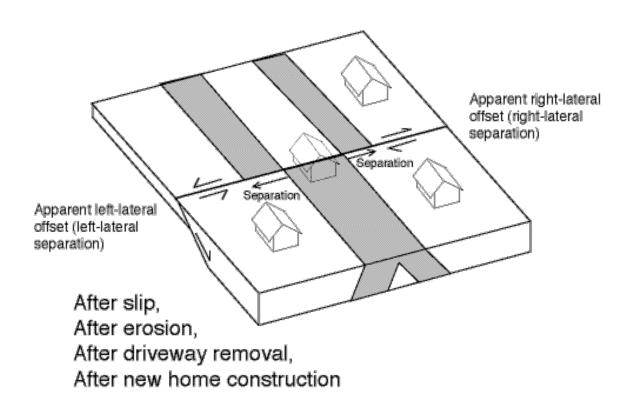

Geologic Classification of Faults

Fig. 24.1

Strike-slip Faults




Dip-slip Faults

Contrast between slip and separation

Fig. 24.2

