DISLOCATIONS

- I Main Topics
 - A Dislocations and other defects in solids
 - B Significance of dislocations
 - C Planar dislocations
 - D Displacement and stress fields for a screw dislocation (mode III)
- II Dislocations and other defects in solids
 - A Dislocations
 - 1 Originally, extra (or missing) planes or partial planes of material (e.g., atoms)
 - 2 Surfaces across which displacements are discontinuous
 - 3 Evidence for dislocations from electron microscopy
 - B Point defects
 - 1 Originally, extra (or missing) volumes (e.g., atoms)
 - 2 Displacements are discontinuous across point defects
- III Significance of dislocations
 - A They account for permanent plastic deformation in crystals
 - B They account for the low observed strength of crystals relative to theoretical predictions
 - B They provide useful quantitative description of relative motions across surfaces across a broad range of scale (crystals [10⁻⁶ m] to plate boundaries [10⁶ m]) – ~12 orders of magnitude!
 - C They induce tremendous stress concentrations and account for large deformations under small "average" stresses

- IV Planar dislocations
 - A Represented mathematically as infinitely long cut with a straight edge
 - B **Relative** displacement (of one side of the dislocation relative to the other) across a dislocation is called the Burger's vector *b*.
 - C Screw dislocation
 - 1 Accommodate a tearing motion
 - 2 Displacement is exclusively parallel to the dislocation edge
 - 3 Analogy: a lock washer or a 360° spiral staircase
 - 4 Macroscopic geologic use: to model faults
 - D Edge dislocation
 - 1 Accommodate opening or sliding motions
 - 2 Displacement is exclusively perpendicular to the dislocation edge
 - 3 Displacement can be parallel or perpendicular to the dislocation plane
 - 4 Analogy: an extra row of corn kernels on a cob of corn
 - 5 Macroscopic geologic use: to model dikes or faults
- V Displacement and stress fields for a screw dislocation (mode III)
 - A Displacement parallel to the dislocation edge increases uniformly along a spiral-like circuit from one side of the dislocation to the other (for a right-handed screw dislocation, point your right thumb along the dislocation edge; displacement parallel to the edge increases in the direction your fingers curl.
 - B Angular position: $\theta = \tan^{-1}(y/x)$
 - C Expressions for displacements and strains
 - 1 Cartesian displacements: $u = u_x$ $v = u_y$ $w = u_z$ 2 Normal strains: $\varepsilon_{xx} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right)$ $\varepsilon_{yy} = \frac{1}{2} \left(\frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \right)$ $\varepsilon_{zz} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \right)$ 3 Shear strains: $\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$ $\varepsilon_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$ $\varepsilon_{zx} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$ 4 Cylindrical displacements: u_r u_θ $u_z = w$ 5 Normal strains: $\varepsilon_{rr} = \frac{1}{2} \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_r}{\partial r} \right)$ $\varepsilon_{\theta\theta} = \frac{u}{r} + \frac{1}{r} \left(\frac{\partial u_\theta}{\partial \theta} \right)$ $\varepsilon_{zz} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \right)$
 - 6 Shear strains: $\varepsilon_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} \frac{u_{\theta}}{r} \right) \varepsilon_{\theta z} = \frac{1}{2} \left(\frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right) \varepsilon_{zr} = \frac{1}{2} \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right)$

Polar coordinates	Cartesian coordinates
a $u_r = 0$	u = 0
b $u_{\theta} = 0$	v = 0
$\mathbf{c} w = b \frac{\theta_z}{2\pi}$	$w = \frac{b}{2\pi} \tan^{-1} \frac{y}{x}$

2 Strain Polar coordinates

Cartesian coordinates

- a $\varepsilon_{r\theta} = \varepsilon_{\theta r} = 0$ b $\varepsilon_{qz} = \varepsilon_{z\theta} = \frac{b}{2\pi r}$ c $u_{rz} = u_{zr} = 0$ e $\varepsilon_{\theta\theta} = 0$ f $\varepsilon_{zz} = 0$ 3 Stress (G = shear modulus) a $\sigma_{r\theta} = \sigma_{\theta r} = 0$ $\varepsilon_{zy} = \varepsilon_{zy} = \frac{b}{2\pi} \frac{x}{x^2 + y^2} = \frac{b}{2\pi} \frac{x}{r^2}$ $\varepsilon_{zz} = \varepsilon_{zx} = \frac{-b}{2\pi} \frac{y}{x^2 + y^2} = \frac{-b}{2\pi} \frac{y}{r^2}$ $\varepsilon_{zz} = 0$ $\varepsilon_{zz} = 0$ $\sigma_{xy} = \sigma_{yx} = 0$ $\sigma_{xy} = \sigma_{yx} = 0$ $\sigma_{xy} = \sigma_{yx} = 0$
 - b $\sigma_{\theta z} = \sigma_{z\theta} = \frac{Gb}{2\pi r}$ c $\sigma_{r\theta} = \sigma_{\theta r} = 0$ d $\sigma_{rr} = 0$ e $\sigma_{\theta \theta} = 0$ f $\sigma_{zz} = 0$ $\sigma_{zz} = \frac{Gb}{2\pi} \frac{x}{x^2 + y^2} = \frac{Gb}{2\pi} \frac{x}{r^2}$ $\sigma_{zz} = \sigma_{zx} = \frac{-Gb}{2\pi} \frac{y}{x^2 + y^2} = \frac{-Gb}{2\pi} \frac{y}{r^2}$ $\sigma_{zz} = 0$ $\sigma_{zz} = 0$

4 Key points

- a Only the shear stresses acting on or in the z direction are non-zero
- b The stresses are singular (i.e., go to infinity) near the dislocation end: a powerful stress concentration exists there.
- c This theoretical singular stress concentration exists no matter how small the relative displacement **b** is.

4

