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RHEOLOGY & LINEAR ELASTICITY

I Main Topics
A Rheology: Macroscopic deformation behavior
B Importance of fluids and fractures in deformation
C Linear elasticity for homogeneous isotropic materials

II Rheology: Macroscopic deformation behavior
A Elasticity

1 Deformation is reversible when load is removed
2 Stress (σ) is related to strain (ε)

3 Deformation is not time dependent if load is constant
4 Examples: Seismic (acoustic) waves, rubber ball

D Viscosity
1 Deformation is irreversible when load is removed
2 Stress (σ) is related to strain rate ( «ε)
3 Deformation is time dependent if load is constant
4 Examples: Lava flows, corn syrup

C Plasticity
1 No deformation until yield strength is locally exceeded; then

irreversible deformation occurs under a constant load
2 Stress is related to strain
3 Deformation can increase with time under a constant load
4 Examples: plastics, soils

D Other rheologies
1 Elastoplastic and viscoplastic (e.g., paint) rheologies
2 Power-law creep  {«ε = (σ1 − σ3)n exp(−Q / RT)} (e.g., rock salt)

E Linear vs. nonlinear behavior

F Rheology = f(σij , fluid  pressure,  ε
.
,  chemistry,  temperature)

G Rheologic equation of real rocks = ?
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III Importance of fluids and fractures in deformation

A Observed effects of water on rocks

1 Lowers long term strength

2 Dissolves/precipitates minerals

3 Increases reaction rates by orders of magnitude

B Evidence for fluid-assisted mass/volume change in deformed rocks

1 Martinsburg shale: "pressure solution" considered responsible for 50%

volume loss based on strain recorded by fossils.

2 Profound implications for "balanced cross sections" which are

constructed assuming conservation of volume of deformed rock

3 Effect of cracks on "pressure solution": cracks greatly enhance the

area of a rock mass that can be exposed to fluids

C Effect of cracks on fluid flow

1 Limited influence where fractures are not interconnected

2 Can increase flow rates by several orders of magnitude where

fractures are connected

D Veins provide evidence for episodic fluid flow and fracturing
IV Linear elastic stress-strain relationships

A Force and displacement of a spring (from Hooke, 1676)
1 F = kx: F= force, k = spring constant, x = displacement

2 Elastic  potential  energy = Fdx =
0
x

∫ kx
0
x

∫  dx = k x
0
x

∫  dx = 1
2

kx2

Equation 1 can be recast in terms of stress and strain:

3 σ11A = k ε110
L

∫ dx

where ε1 1 = du/dx, A = x-section area, and L = spring length
If ε1 1 is a constant along the length of the spring, then

4 σ11A = kε11 dx
0
L

∫ = kε11L

5 σ11 = kL

A
ε11;  stress:strain relationship is linear. OK for small strains.
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B Linear elasticity
1 Constitutive laws for relating stress and (infinitesimal) strain
2 Uniaxial stress: σ11 = σ1 ≠0; σ22 = σ33 = 0

Unstrained

      Strained

x1

x2

x3

σ1

a ε1 1 = σ11/E Hooke's Law (or ε1 = σ1/E)

E = Young's modulus; dimensions of stress
b ε2 2 = ε3 3 = -ν ε1 1 (or ε2 = ε3 = -ν ε1)

i ν = Poisson's ratio; dimensionless

ii Strain in one direction tends to induce strain in another
3 Linear elasticity in 3 dimensions

From superposition of Hooke's Law for homogeneous isotropic
materials

a ε11 = σ11/E  - (σ22 + σ33) (ν/E)
b ε2 2 = σ22/E  - (σ11 + σ33) (ν/E)
c ε3 3 = σ33/E  - (σ11 + σ22) (ν/E)

d Directions of principal stresses and principal strains coincide
e Extension in one direction can occur without tension
f Compression in one direction can occur without shortening

D Isotropic (hydrostatic) stress: σ1 = σ2 = σ3; no shear stress
E Uniaxial strain: ε1 1 = ε1 ≠ 0; ε2 2 = ε3 3 = 0
F Plane stress: σ33 = σ3 = 0; σ11  ≠ 0; σ22 ≠ 0

Thin plate approximation; stress perpendicular to plane are zero
G Plane strain: ε3 3 = ε3 = 0; ε1 1  ≠ 0; ε2 2 ≠ 0

1 Displacement in the 3-direction is constant (zero)
2 Plate is confined between rigid walls ⊥  to x3
3 Thick plate approximation

H Pure shear stress: σ1 = - σ2; σ3 = 0
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IV Strain energy
A W = (F)(u) = E
B Uniaxial stress

x

y

z

dx

dy
dz

dxε
x

dy dzσ
x

σ
x

1 dW = (F)(du) = 1/2 (σx dy dz) (εxdx) = 1/2 (σx εx) (dx dy dz)

2 Strain energy density = W0 = dW/(dx dy dz)= 1/2 (σx εx)

C Strain energy associated with three-dimensional loading
(in terms of principal stresses and principal strains)
1 dW = 1/2 (σ1 ε1 + σ2 ε2 +σ2 ε2) (dx dy dz)
2 W0 = dW/(dx dy dz) = 1/2 (σ1 ε1 + σ2 ε2 +σ2 ε2)

V Relationships among different elastic moduli
1 G = µ = shear modulus = E/(2[1+ν]); εxy = σxy/2G

2 λ = Lame' constant = Ev /([1 + ν ][1 - 2ν ] )
3 K = bulk modulus = E/(3[1 - 2ν ] )
4 β = compressibility = 1/K

∆ = εxx + εyy + εzz  =  -p/K; p = pressure

5 P-wave speed: V p = K + 4
3

µ



 / ρ

6 S-wave speed: Vs = µ / ρ
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