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TENSOR TRANSFORMATION OF STRESSES

Transformation of stresses between planes of arbitrary orientation

In the 2-D example of lecture 16, the normal and shear stresses
(tractions) were found on one arbitrarily oriented plane in the n,s
reference frame. Here we consider_two perpendicular (but otherwise
arbitrarily oriented) planes, one perpendicular to the x’-axis, and the
other perpendicular to the y’-axis and seek to find the normal and shear
stress acting on them. In lecture 16 we considered the case where no
shear stresses acted on the planes perpendicular to the x- and y-axes.
We address here the more general case where shear stresses might
exist, but still apply the strategy of lecture 16.

The key concept is that the total value of each stress component in one
reference frame is the sum of the weighted contributions from _all the

components in another frame (see Figures 18.1 — 18.4). We start with a
two-dimensional example:

o= +w@o +w@o +wWg
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All four stress components are needed to completely describe stresses
at a point in the x,y reference must be known. The w terms are the
weighting factors. In order for the equation to be dimensionally
consistent, all the weighting factors must be dimensionless. Figures
18.1 — 18.4 show that the weighting factors describe as dimensionless
ratios how a force in one direction projects into another direction
(here the x’ direction), and how the ratio of an area with a normal in
one direction projects to an area with a normal in another direction
(here the x’ direction). Algebraically, we can write this as
i_g&&gp_x-kﬂp\x&mlzy +§Plng_X+DAy&DFy
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Each term in parentheses weights the following X,y stress component
to give a weighted contribution to the stress term in the x',y’ reference
frame. Each ratio in parentheses equals the direction cosine between
the reference frame axes of the numerator and denominator, so:
g,.,.=a,_a,, o a

[ ] ] 1 + |a|0 +a|a|a +a.a.0'
XX T OXXIXX XK OXXIXY Xy XY OXX CYX T OXY XY Ty

Stephen Martel 18-1 University of Hawaii



GG303 Lecture 18 9/4/01 2

Similarly, each of the other three 2-D stress components in the X'y’

reference frame also involve all four stress components in the X,y
reference frame:

The shorthand tensor notation for the four equations above is
i TRk i ikl = (xy) or (1,2)

The exact same notation applies for 3-D!
ai.j.=ai.kaj.| Ous L,k = (xy,z) or (1,2,3)

The same expressions result from multiplying the following matrices.
In 2-D

09 012'%91'1 8otl0y) 018y a2'15
Dop TooH Bor 8o TpnHfs 2ok
In 3-D

O O
Gy Opy 01'3D_Eb1'1 &y Azl O, Opta, A a31D
%..U..O'..—Ddz. 32. 82.‘]]%' [0) a, . az. a3.
F21r 922 9235 f21 22 Pagfr %22 9235t P2 %2
P31 %932 9330 B31 %32 330931 932 93303 23 330

In general

[L T
gji'j'g'[a] [d[4 Works for either 2-D or 3-D!
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Advantages of Mohr circle approach over tensor/matrix_approach
1 Gives a geometric_meaning to stress relationships.
2 Can do stress rotation problems in your head.

Advantages of tensor or matrix approach over Mohr circle approach
1 The physical underpinning behind how stresses transform is explicit;
it is not obvious with a Mohr circle construction. First, the notion
that all members of a stress tensor are involved in the

transformation is more straightforward than with a Mohr circle.
Second, the two rotation terms aj’k and aj| reflect (a) the rotation

of the area that the stress components act on, and (b) the rotation of
the direction that the components act in, so the tendency to
incorrectly consider stress as a force is reduced; the tensor quality
of stresses is more apparent.

2 The double angle expressions in Mohr circle, which can be difficult
to remember and work with, are not present here.

3 Easier to address with a computer or a calculator.

4 Can apply just as easy to 3-D as 2-D; far more useful for 3-D
problems than Mohr diagrams.

5 Powerful methods of linear algebra exist for finding the magnitudes
of the principal stresses ("eigenvalues") and the direction of the
principal stresses ("eigenvectors), so the underlying nature of the
stress field is easier to identify; this is especially important in 3-
D.

6 The shear stress convention with tensors is logical.
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Fig. 18.1

Contribution of ayy to Oy \ y

COoSs ex'x = ax'x

COS ex'y = ax'y

What does ayy on face Ay of area Ay contribute to oyy on face Ay of area Ay'?

Start with the definition of stress: |ayne(1) = Fy (1) Ay,

The unknown quantities FX-(l) and Ay must be found from the known quantities oyy and 6.

To do this we first find the force Fx(l) associated with ayy:

-

Force = (stress)(area) 9{0\
Fx(1) = oy A By
Fy (D)

The component of Fx(l) that acts along the x'-direction is Fx(l) COS By'x.
Fxl(l) = Fx(l) CcOos ex'x

As can be seen from the diagram atop the page Ay = Ay COs Bx'x, SO
Ay = Ay/cos By

So the contribution of ayy to Oy is:
Oy (D) = Fyo1) 1 Ap = Fy(Mcos By / (Axfcos Byx ) = (Fy(1) 1 Ay) cos Byx cos Byx

Oxx 1) = axex axex Oxx ~——— Contribution of ayy to Oy

FeD= Ac Fe R

AXI Ax' FX AX

-<— How the components project
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Fig. 18.2

Contribution of ayy to oyy: y

A coSs ex'x = ax'x

COos ex'y = ax'y

What does oyy on face Ay of area Ay contribute to oyy' on face Ay of area Ay'?

Start with the definition of stress: OX'X'(Z) = FX-(Z)/ Ay

The unknown quantities FX-(l) and Ay must be found from the known quantities oy and 6.
To do this we first find the force Fy(z) associated with ayy:

Force = (stress)(area)
Fy(2) =

2
Fy(

The component of F(2) that acts along the x-direction is Fy(2) cos Byy.
Fx(@) = F(2) cos By By

y ‘(L\
As can be seen from the diagram atop the page Ay = Ay’ COS By, SO ©r

Ay = Ay/cos By

So the contribution of oyy to Oy is:
Oy =F @) /Ay = Fy €0s By / (Ax/cos Bxx ) = (Fy / Ay) cos Bxx cos By

oxx(?) = axx ax'y Oxy ~—— Contribution of gy, to oyy'

Fe@= Ax Fe Ry

-«—— How the components project
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Fig. 18.3
Contribution of Oyx to ayy y
Oyx
\y
v i C
|8y oL
ex'y
Ax’ ex'x X
. -="" \Oxx
“ Cos By'x = ax'x
cos Byy = ay'y
D —

What does oy on face Ay, of area Ay, contribute to y'y' on face Ay of area Ay?

Start with the definition of stress: O'X'X'(3) = FX'(3)/ Ay

The unknown quantities FX-(3) and Ay must be found from the known quantities oyy and 6.

To do this we first find the force FX(3) associated with oyy:

-

Force = (stress)(area) \?ﬁ@\
Fx(3) = Oyx Ax By
Fy )

The component of FX(3) that acts along the x'-direction is FX(3) COS By'x.
FX'(3) = Fx(s) CcOos ex'x

As can be seen from the diagram atop the page Ay = Ay’ cos By'y, so
Ay = Aylcos Byy

So the contribution of oyy to ay'y' is:
Gx‘x'(?’) = FX-(3) [ Ay = FX(3) cos Oy'x / (Ay/cos Oxy) = (FX(3) /Ay) COoS By'x COS By'x

oxx(3) = ax'y ax'x Oyx ~——— Contribution of oyy t0 Oy'y!

FeB = A Fe FG)

Ayl Ay' FX AX

-<— How the components project
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Fig. 18.4

Contribution of oy, to oy'y: y

COoSs ex'x = ax'x

COS ex'y = ax'y

y v

What does ayy on face Ay of area Ay contribute to gy on face Ay of area Ay?

Start with the definition of stress: |ayn(4) = Fy (4 Ay,

The unknown quantities Fy(4) and Ay: must be found from the known quantities oyy and 6.

To do this we first find the force Fy(4) associated with Oyy:

Force = (stress)(area) . (4)
) _ y
Fyl) =oyy Ay

The component of FV(4) that acts along the x'-direction is Fy(4) cos By'y.
Fx® = Fy(4) cos Byy By

As can be seen from the diagram atop the page Ay = Ay’ cos By'y, SO > ot

Ay = Aylcos Byy

So the contribution of ayy(4) to gy () is:
Oyye®) = Fp®) 1A = Fy(4) cos By / (Ay/cos By ) = (Fy(4) I Ay) cos By cos Byy

oxx(4) = ax'y ax'y ny(4) ~—— Contribution of ayy to o'y

Fe@= Ay Fe RO

-<—— How the components project

AX‘ Ax' Fy Ay
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