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TENSOR TRANSFORMATION OF STRESSES

Transformation of stresses between planes of arbitrary orientation                                                                                                           
In the 2-D example of lecture 16, the normal and shear stresses
(tractions) were found on one arbitrarily oriented plane in the n,s      
reference frame.  Here we consider two perpendicular (but otherwise       
arbitrarily oriented) planes, one perpendicular to the x’-axis, and the
other perpendicular to the y’-axis and seek to find the normal and shear
stress acting on them. In lecture 16 we considered the case where no
shear stresses acted on the planes perpendicular to the x- and y-axes.
We address here the more general case where shear stresses might
exist, but still apply the strategy of lecture 16.

The key concept is that the total value of each stress component in one        
reference frame is the sum of the weighted contributions from all                                                       the     
components in another frame (see Figures 18.1 – 18.4).  We start with a
two-dimensional example:
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All four stress components are needed to completely describe stresses
at a point in the x,y reference must be known.  The w terms are the
weighting factors.  In order for the equation to be dimensionally
consistent, all the weighting factors must be dimensionless.  Figures
18.1 – 18.4 show that the weighting factors describe as dimensionless
ratios how a force in one direction projects into another direction
(here the x’ direction), and how the ratio of an area with a normal in
one direction projects to an area with a normal in another direction
(here the x’ direction).  Algebraically, we can write this as
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Each term in parentheses weights the following x,y stress component
to give a weighted contribution to the stress term in the x’,y’ reference
frame.  Each ratio in parentheses equals the direction cosine between
the reference frame axes of the numerator and denominator, so:
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Similarly, each of the other three 2-D stress components in the x’,y’
reference frame also involve all four stress components in the x,y
reference frame:
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The shorthand tensor notation for the four equations above is
σ σ

i j
a
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a
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 = ; i,j,k,l = (x,y) or (1,2)

The exact same notation applies for 3-D!                                                                
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 = ; i,j,k,l = (x,y,z) or (1,2,3)

The same expressions result from multiplying the following matrices.
In 2-D

σ σ
σ σ

σ σ
σ σ

11 1 2

2 1 2 2

11 1 2

2 1 2 2

11 12

21 22

11 2 1

1 2 2 2

' ' ' '

' ' ' '

' '

' '

' '

' '









 =





























a a

a a

a a

a a

In 3-D
σ σ σ
σ σ σ
σ σ σ

σ σ σ
σ σ σ
σ σ

11 1 2 1 3

2 1 2 2 2 3

31 3 2 3 3

11 1 2 1 3

2 1 2 2 2 3

31 3 2 3 3

11 12 13

21 22 23

31

' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' '

' ' '

' ' '

' ' '

















=

















a a a

a a a

a a a
3232 33

11 2 1 31

1 2 2 2 3 2

1 3 2 3 3 3
σ

































a a a

a a a

a a a

' ' '

' ' '

' ' '

In general

σ σ
i j

a a T
' '

  





= [ ] [ ] [ ] Works for either 2-D or 3-D!                         



GG303 Lecture 18 9 / 4 / 0 1 3

Stephen Martel 1 8 - 3 University of Hawaii

Advantages of Mohr circle approach over tensor/matrix approach                                                                                                      
1 Gives a geometric meaning to stress relationships.                                                                               
2 Can do stress rotation problems in your head.

Advantages of tensor or matrix approach over Mohr circle approach                                                                                                         
1 The physical underpinning behind how stresses transform is explicit;                                                                                                             

it is not obvious with a Mohr circle construction.  First, the notion                                                                            
that all members of a stress tensor are involved in the
transformation is more straightforward than with a Mohr circle.
Second, the two rotation terms ai’k and aj’l reflect (a) the rotation

of the area that the stress components act on, and (b) the rotation of    
the direction that the components act in, so the tendency to    
incorrectly consider stress as a force is reduced; the tensor quality
of stresses is more apparent.

2 The double angle expressions in Mohr circle, which can be difficult
to remember and work with, are not present here.

3 Easier to address with a computer or a calculator.
4 Can apply just as easy to 3-D as 2-D; far more useful for 3-D

problems than Mohr diagrams.
5 Powerful methods of linear algebra exist for finding the magnitudes

of the principal stresses ("eigenvalues") and the direction of the
principal stresses ("eigenvectors), so the underlying nature of the
stress field is easier to identify; this is especially important in 3-
D.

6 The shear stress convention with tensors is logical.
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Fig. 18.1

Contribution of σxx to σx'x' 

Fx(1)

Fx'
(1)

θx'x
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What does σxx on face Ax of area Ax contribute to σx'x' on face Ax' of area Ax'?

Start with the definition of stress:  σx'x'(1) = Fx'(1)/ Ax'.

The unknown quantities Fx'(1) and Ax' must be found from the known quantities σxx and θ.  

To do this we first find the force Fx(1) associated with σxx:

Force = (stress)(area)
Fx(1) = σxx Ax

The component of Fx(1) that acts along the x'-direction is Fx(1) cos θx'x.
Fx'(1) = Fx(1) cos θx'x

As can be seen from the diagram atop the page Ax = Ax' cos θx'x, so
Ax' = Ax/cos θx'x           

So  the contribution of σxx to σx'x' is:
σx'x'(1)  = Fx'(1) / Ax'  = Fx(1)cos θx'x / (Ax/cos θx'x )  = (Fx(1) / Ax) cos θx'x  cos θx'x 

σx'x'(1) = ax'x ax'x σxx Contribution of σxx to σx'x'

How the components project

σxx

θx'y

cos θx'x = ax'x

cos θx'y = ax'y

x'

y'

σx'x'Ax

Ax’ θx'x
θx'x

θx'y

Fx'
(1) =   Ax    Fx'   Fx(1) 

Ax'          Ax'    Fx   Ax
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Fig. 18.2
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What does σxy on face Ax of area Ax contribute to σx'x' on face Ax' of area Ax'?

Start with the definition of stress:  σx'x'(2) = Fx'(2)/ Ax'.

The unknown quantities Fx'(1) and Ax' must be found from the known quantities σxy and θ.  

To do this we first find the force Fy(2) associated with σxy:

Force = (stress)(area)
Fy(2) = σxy Ax

The component of Fy(2) that acts along the x'-direction is Fy(2) cos θx'y.
Fx'(2) = Fy(2) cos θx'y

As can be seen from the diagram atop the page Ax = Ax' cos θx'x, so
Ax' = Ax/cos θx'x           

So  the contribution of σxx to σx'x' is:
σx'x'(2)  = Fx'(2) / Ax'  = Fy cos θx'y / (Ax/cos θx'x )  = (Fy / Ax) cos θx'x  cos θx'y 

σx'x'(2) = ax'x ax'y σxy Contribution of σxy to σx'x'

How the components project

σxy

θx'y

cos θx'x = ax'x

cos θx'y = ax'y

x'
σx'x'

Ax’ θx'x
θx'x

θx'y

Fx'
(2) =   Ax    Fx'    Fy(2) 

Ax'          Ax'    Fy    Ax

Contribution of σxy to σx'x' 

Ax
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Fig. 18.3
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What does σyx on face Ay of area Ay contribute to σx'x' on face Ax' of area Ax'?

Start with the definition of stress:  σx'x'(3) = Fx'(3)/ Ax'.

The unknown quantities Fx'(3) and Ax' must be found from the known quantities σxx and θ.  

To do this we first find the force Fx(3) associated with σyx:

Force = (stress)(area)
Fx(3) = σyx Ax

The component of Fx(3) that acts along the x'-direction is Fx(3) cos θx'x.
Fx'(3) = Fx(3) cos θx'x

As can be seen from the diagram atop the page Ay = Ax' cos θx'y, so
Ax' = Ay/cos θx'y           

So  the contribution of σyx to σx'x' is:
σx'x'(3)  = Fx'(3) / Ax'  = Fx(3) cos θx'x / (Ay/cos θx'y )  = (Fx(3) / Ay) cos θx'x  cos θx'x 

σx'x'(3) = ax'y ax'x σyx Contribution of σxx to σx'x'

How the components project

θx'y

cos θx'x = ax'x

cos θx'y = ax'y

x'Ay

σx'x'

Ax’ θx'x

σyx

θx'x

θx'y

Fx'
(3) =   Ax     Fx'   Fx(3) 

Ay'          Ay'     Fx   Ax

Contribution of σyx to σx'x' 

Fx(3)

Fx'
(3)

θx'x

x'
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Fig. 18.4
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What does σyy on face Ay of area Ay contribute to σx'x' on face Ax' of area Ax'?

Start with the definition of stress:  σx'x'(4) = Fx'(4)/ Ax'.

The unknown quantities Fx'(4) and Ax' must be found from the known quantities σYY and θ.  

To do this we first find the force Fy(4) associated with σyy:

Force = (stress)(area)
Fy(4) = σyy Ay

The component of Fy(4) that acts along the x'-direction is Fy(4) cos θx'y.
Fx'(4) = Fy(4) cos θx'y

As can be seen from the diagram atop the page Ay = Ax' cos θx'y, so
Ax' = Ay/cos θx'y           

So  the contribution of σyy(4) to σx'x'(4) is:
σx'x'(4)  = Fx'(4) / Ax'  = Fy(4) cos θx'y / (Ay/cos θx'y )  = (Fy(4) / Ay) cos θx'y  cos θx'y 

σx'x'(4) = ax'y ax'y σyy(4) Contribution of σyy to σx'x'

How the components project

θx'y

cos θx'x = ax'x

cos θx'y = ax'y

x'
Ay

σx'x'

Ax’ θx'x

σyy

θx'x

θx'y

Fx'
(4) =   Ay     Fx'   Fy(4) 

Ax'          Ax'     Fy   Ay

Contribution of σyy to σx'x' 

Fy(4)

Fx'
(4)

θx'y


