STRESS AT A POINT

- I Main Topics
 - A Stress vector (traction) on a plane
 - B Stress at a point
 - C Principal stresses
 - D Initial 2-D stress transformation equations

II Stress vector (traction) <u>on a particular plane</u>: τ

- A $\tau = \lim_{A \to 0} F/A$. Dimensions of force per unit area
- B Traction vectors can be added vectorially.
- C A traction vector can be resolved into normal and shear components.
 - 1 A normal traction $\stackrel{\rightarrow}{\tau}_{n}$ acts perpendicular to a plane
 - 2 A shear traction τ_{S} acts parallel to a plane

D The magnitudes of tractions depend on the orientation of the plane III Stress at a point

- A Stresses refer to **balanced** internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
- B "On -in convention": The stress component $\sigma_{\rm ii}$ acts on the

plane normal to the i-direction and acts in the j-direction

- 1 Normal stresses: i=j
- 2 Shear stresses: i≠j

Shear stresses

$$C \quad \sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \text{ or } \sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

- D In 3-D, nine components are needed to define the state of stress at a point. These nine components are the traction components that act on three perpendicular planes (planes with normals in the x-, y-, and z-directions)
- E The state of stress can (and usually does) vary from point to point.
- F For rotational equilibrium, $\sigma_{XY} = \sigma_{YX}$, $\sigma_{XZ} = \sigma_{ZX}$, $\sigma_{YZ} = \sigma_{ZY}$

IV Principal Stresses (these have magnitudes and orientations)

- A Principal stresses act on planes which feel no shear stress
- B The principal stresses are normal stresses.
- C Principal stresses act on perpendicular planes
- D The maximum, intermediate, and minimum principal stresses are usually designated σ_1 , σ_2 , and σ_3 , respectively. Note that the

principal stresses have a single subscript.

E The principal stresses represent the stress state most simply.

$$\mathsf{F} \quad \sigma_{ij} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} \text{ 3-D or } \sigma_{ij} = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \text{ 2-D}$$

- V Initial 2-D stress transformation equations
 - A Consider three planes A, A1, and A2 that form the sides of a triangular prism; these have normals in the n-, 1-, and 2-directions, respectively. Plane A1 is acted on by known normal stress σ_1 . Plane A2 is acted on by known normal stress σ_2 . The n-direction is at angle θ_1 (= θ) with respect to the 1-direction, and at angle θ_2 with respect to the 2-direction. The s-direction is at a counter-clockwise 90° angle relative to the n-direction (like y and x).

To find the normal traction, τ_n that acts on plane A, we determine how much $\sigma 1$ and $\sigma 2$ each contribute individually to τ_n and then sum the contributions (Figures 16.1, 16.2). Similarly, to find the shear traction, τ_s that acts on plane A, we determine how much $\sigma 1$ and $\sigma 2$ each contribute to τ and then sum those contributions (Figures 16.3, 16.4). The results are:

- 1 $\tau_{\rm n} = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta$
- 2 $\tau_s = (\sigma_2 \sigma_1) \sin\theta \cos\theta$

What does σ_1 on face A_1 of area A_1 contribute to τ_n on face A of area A?

Start with the definition of stress: $\tau_n^{(1)} = F_n^{(1)} / A$.

The unknown quantities F_n and A must be found from the known quantities σ_1 and $\theta.$

To do this we first find the force F_1 associated with σ_1 :

$$\frac{Force = (stress)(area)}{F_1 = \sigma_1 A_1}$$

The component of force F_1 that acts along the n-direction is $F_1 \cos \theta_1$. $F_n^{(1)} = F_1 \cos \theta_1$

As can be seen from the diagram atop the page $A_1 = A \cos \theta_1$, so $A = A_1/\cos \theta_1$

So the contribution to σ_n by σ_1 is: $\tau_n^{(1)} = F_n^{(1)} / A = F_1 \cos \theta_1 / (A_1 / \cos \theta_1) = (F_1 / A_1) \cos \theta_1 \cos \theta_1 = \sigma_1 \cos \theta_1 \cos \theta_1 \cos \theta_1$ $\overline{\tau_n^{(1)} = \sigma_1 \cos \theta \cos \theta}$ First contribution to τ_n

What does σ_2 on face A_2 of area A_2 contribute to τ_n on face A of area A?

Start with the definition of stress: $\tau_n^{(2)} = F_s^{(2)} / A$.

The unknown quantities F_s and A must be found from the known quantities σ_2 and θ .

What does σ_1 on face A_1 of area A_1 contribute to τ_s on face A of area A?

Start with the definition of stress: $\tau_s^{(1)} = F_s^{(1)} / A$

The unknown quantities F_S and A must be found from the known quantities σ_2 and θ .

To do this we first find the force F_1 associated with σ_1 :

Force = (stress)(area) $F_1 = \sigma_1 A_1$

The component of force F₁ that acts along the s-direction is - F₁ cos θ_2 . $F_s^{(1)} = -F_1 \cos \theta_2$

As can be seen from the diagram atop the page $A_1 = A \cos \theta_1$, so $A = A_1/\cos \theta_1$

So the contribution to τ by σ_1 is: $\tau_s^{(1)} = F_s^{(1)} / A = -F_1 \cos \theta_2 / (A_1 / \cos \theta_1) = (-F_2 / A_2) \cos \theta_2 \cos \theta_1 = -\sigma_1 \cos \theta_2 \cos \theta_1$ $\overline{\tau_s^{(1)} = -\sigma_1 \sin \theta \cos \theta}$ First contribution to τ_s

What does σ_2 on face A_2 of area A_2 contribute to τ_S on face A of area A?

Start with the definition of stress: $\tau_s^{(2)} = F_s^{(2)} / A$

The unknown quantities F_s and A must be found from the known quantities σ_2 and θ .

