STRESS AT A POINT

I Main Topics
A Stress vector (traction) on a plane
B Stress at a point
C Principal stresses
D Initial 2-D stress transformation equations
II Stress vector (traction) on a particular plane: $\vec{\tau}$
A $\vec{\tau}=\lim _{A \rightarrow 0} \vec{F} / A$. Dimensions of force per unit area
B Traction vectors can be added vectorially.
C A traction vector can be resolved into normal and shear components.
1 A normal traction $\vec{\tau}_{\mathrm{n}}$ acts perpendicular to a plane
2 A shear traction $\vec{\tau}_{\text {s }}$ acts parallel to a plane
D The magnitudes of tractions depend on the orientation of the plane
III Stress at a point
A Stresses refer to balanced internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
B "On -in convention": The stress component $\sigma_{i j}$ acts on the plane normal to the i -direction and acts in the j -direction

1 Normal stresses: i=j
2 Shear stresses: $i \neq j$

Normal stresses

Shear stresses

C $\sigma_{i j}=\left[\begin{array}{lll}\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\ \sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\ \sigma_{z x} & \sigma_{z y} & \sigma_{z z}\end{array}\right]$ or $\sigma_{i j}=\left[\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right]$
D In 3-D, nine components are needed to define the state of stress at a point. These nine components are the traction components that act on three perpendicular planes (planes with normals in the $x-, y$-, and z-directions)
E The state of stress can (and usually does) vary from point to point.
F For rotational equilibrium, $\sigma_{x y}=\sigma_{y x}, \sigma_{x z}=\sigma_{z x}, \sigma_{y z}=\sigma_{z y}$

IV Principal Stresses (these have magnitudes and orientations)
A Principal stresses act on planes which feel no shear stress
B The principal stresses are normal stresses.
C Principal stresses act on perpendicular planes
D The maximum, intermediate, and minimum principal stresses are usually designated σ_{1}, σ_{2}, and σ_{3}, respectively. Note that the principal stresses have a single subscript.

E The principal stresses represent the stress state most simply. F $\sigma_{i j}=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3}\end{array}\right] 3-\mathrm{D}$ or $\sigma_{i j}=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right]$ 2-D

V Initial 2-D stress transformation equations
A Consider three planes A, A1, and A2 that form the sides of a triangular prism; these have normals in the n-, 1 -, and 2 -directions, respectively. Plane A1 is acted on by known normal stress σ_{1}. Plane A2 is acted on by known normal stress σ_{2}. The n-direction is at angle $\theta_{1}(=\theta)$ with respect to the 1 -direction, and at angle θ_{2} with respect to the 2-direction. The s-direction is at a counterclockwise 90° angle relative to the n -direction (like y and x).

To find the normal traction, τ_{n} that acts on plane A, we determine how much $\sigma 1$ and $\sigma 2$ each contribute individually to τ_{n} and then sum the contributions (Figures 16.1, 16.2). Similarly, to find the shear traction, τ_{s} that acts on plane A, we determine how much $\sigma 1$ and $\sigma 2$ each contribute to τ and then sum those contributions (Figures 16.3, 16.4). The results are:

$$
\begin{array}{ll}
1 & \tau_{\mathrm{n}}=\sigma_{1} \cos ^{2} \theta+\sigma_{2} \sin ^{2} \theta \\
2 & \tau_{s}=\left(\sigma_{2}-\sigma_{1}\right) \sin \theta \cos \theta
\end{array}
$$

Contribution of σ_{1} to τ_{n}

What does σ_{1} on face A_{1} of area A_{1} contribute to τ_{n} on face A of area A ?
Start with the definition of stress: $\tau_{n}(1)=F_{n}(1) / A$.
The unknown quantities F_{n} and A must be found from the known quantities σ_{1} and θ.
To do this we first find the force F_{1} associated with σ_{1} :
Force $=$ (stress)(area)
$\mathrm{F}_{1}=\sigma_{1} \mathrm{~A}_{1}$
The component of force F_{1} that acts along the n-direction is $F_{1} \cos \theta_{1}$.

$F_{n}{ }^{(1)}=F_{1} \cos \theta_{1}$
As can be seen from the diagram atop the page $A_{1}=A \cos \theta_{1}$, so $A=A_{1} / \cos \theta_{1}$

So the contribution to σ_{n} by σ_{1} is:
$\tau_{n}{ }^{(1)}=F_{n}(1) / A=F_{1} \cos \theta_{1} /\left(A_{1} / \cos \theta_{1}\right)=\left(F_{1} / A_{1}\right) \cos \theta_{1} \cos \theta_{1}=\sigma_{1} \cos \theta_{1} \cos$
$\tau_{n}{ }^{(1)}=\sigma_{1} \cos \theta \cos \theta$ \longleftarrow First contribution to τ_{n}

Contribution of σ_{2} to τ_{n}

What does σ_{2} on face A_{2} of area A_{2} contribute to τ_{n} on face A of area A ?
Start with the definition of stress: $\tau_{n}{ }^{(2)}=\mathrm{F}_{\mathrm{s}}(2) / \mathrm{A}$.
The unknown quantities F_{S} and A must be found from the known quantities σ_{2} and θ.
To do this we first find the force F_{2} associated with σ_{2} :
Force $=$ (stress)(area)
$F_{2}=\sigma_{2} A_{2}$
The component of force F_{2} that acts along the n -direction is $\mathrm{F}_{2} \cos \theta_{2}$. $F_{n}{ }^{(2)}=F_{2} \cos \theta_{2}$

As can be seen from the diagram atop the page $A_{2}=A \cos \theta_{2}$, so
 $A=A_{2} / \cos \theta_{2}$

So the contribution to σ_{n} by σ_{2} is:
$\tau_{n}(2)=F_{n}(2) / A=F_{2} \cos \theta_{2} /\left(A_{2} / \cos \theta_{2}\right)=\left(F_{2} / A_{2}\right) \cos \theta_{2} \cos \theta_{2}=\sigma_{2} \cos \theta_{2} \cos \theta_{2}$
$\tau_{n}{ }^{(2)}=\sigma_{2} \sin \theta \sin \theta$
\longleftarrow Second contribution to σ_{n}
$\tau_{\mathrm{n}}=\tau_{\mathrm{n}}{ }^{(1)}+\tau_{\mathrm{n}}{ }^{(2)}=\sigma_{1} \cos ^{2} \theta+\sigma_{2} \sin ^{2} \theta$

Contribution of σ_{1} to τ_{S}

What does σ_{1} on face A_{1} of area A_{1} contribute to τ_{s} on face A of area A ?
Start with the definition of stress: $\tau_{\mathrm{s}}{ }^{(1)}=\mathrm{F}_{\mathrm{S}}(1) / \mathrm{A}$
The unknown quantities F_{S} and A must be found from the known quantities σ_{2} and θ.
To do this we first find the force F_{1} associated with σ_{1} :
Force $=($ stress $)($ area $)$
$\mathrm{F}_{1}=\sigma_{1} \mathrm{~A}_{1}$

The component of force F_{1} that acts along the s-direction is $-F_{1} \cos \theta_{2}$. $F_{S}{ }^{(1)}=-F_{1} \cos \theta_{2}$

As can be seen from the diagram atop the page $A_{1}=A \cos \theta_{1}$, so
$A=A_{1} / \cos \theta_{1}$
So the contribution to τ by σ_{1} is:
$\tau_{s}(1)=F_{s}(1) / A=-F_{1} \cos \theta_{2} /\left(A_{1} / \cos \theta_{1}\right)=\left(-F_{2} / A_{2}\right) \cos \theta_{2} \cos \theta_{1}=-\sigma_{1} \cos \theta_{2} \cos \theta_{1}$
$\tau_{\mathbf{S}}{ }^{(1)}=-\sigma_{1} \sin \theta \cos \theta$
\longleftarrow First contribution to $\tau_{\text {s }}$

Contribution of σ_{2} to τ_{S}

What does σ_{2} on face A_{2} of area A_{2} contribute to τ_{s} on face A of area A ?
Start with the definition of stress: $\tau_{s}{ }^{(2)}=F_{s}{ }^{(2) / A}$
The unknown quantities F_{S} and A must be found from the known quantities σ_{2} and θ.
To do this we first find the force F_{2} associated with σ_{2} :
Force $=($ stress $)($ area $)$
$\mathrm{F}_{2}=\sigma_{2} \mathrm{~A}_{2}$
The component of force F_{2} that acts along the s-direction is $F_{2} \cos \theta_{1}$. $F_{s}{ }^{(2)}=F_{2} \cos \theta_{1}$

As can be seen from the diagram atop the page $A_{2}=A \cos \theta_{2}$, so
 $A=A_{2} / \cos \theta_{2}$

So the contribution to τ by σ_{2} is:
$\tau_{s}(2)=F_{s}(2) / A=F_{2} \cos \theta_{1} /\left(A_{2} / \cos \theta_{2}\right)=\left(F_{2} / A_{2}\right) \cos \theta_{1} \cos \theta_{2}=\sigma_{2} \cos \theta_{2} \cos \theta_{1}$

$$
\tau_{\mathrm{s}}(2)=\sigma_{2} \sin \theta \cos \theta
$$

$\tau_{\mathbf{S}}=\tau_{\mathbf{S}}{ }^{(1)}+\tau_{\mathrm{S}}{ }^{(2)}=\left(\sigma_{2}-\sigma_{1}\right)(\sin \theta \cos \theta)$
\longleftarrow Second contribution to τ_{S}
\longleftarrow Total value of $\tau_{\text {S }}$

