FINITE STRAIN AND INFINITESIMAL STRAIN

I Main Topics (on infinitesimal strain)
A The finite strain tensor [E]
B Deformation paths for finite strain
C Infinitesimal strain and the infinitesimal strain tensor ε
II The finite strain tensor [E]
A Used to find the changes in the squares of lengths of line segments in a deformed body.
B Definition of $[E]$ in terms of the deformation gradient tensor [F]
Recall the coordinate transformation equations:
$1\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ or $\left[X^{\prime}\right]=[F][X]$
$2\left[\begin{array}{l}d x^{\prime} \\ d y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}d x \\ d y\end{array}\right]$ or $\left[d X^{\prime}\right]=[F][d X]$
If $\left[\begin{array}{l}d x \\ d y\end{array}\right]=[d X]$, then $\left[\begin{array}{ll}d x & d y\end{array}\right]=[d X]^{T}$; transposing a matrix is switching its rows and columns
$\left.3(d s)^{2}=(d x)^{2}+(d y)^{2}=\left[\begin{array}{ll}d x & d y\end{array}\right]_{[d x}^{[d x}\right]=[d X]^{T}[d X]=[d X]^{T}[I][d X]$,
where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the identity matrix.
$4 \quad\left(d s^{\prime}\right)^{2}=\left(d x^{\prime}\right)^{2}+\left(d y^{\prime}\right)^{2}=\left[\begin{array}{ll}d x^{\prime} & d y^{\prime}\end{array}\right]\left[\begin{array}{l}d x^{\prime} \\ d y^{\prime}\end{array}\right]=\left[d X^{\prime}\right]^{T}\left[d X^{\prime}\right]$
Now dX' can be expressed as $[\mathrm{F}][\mathrm{dX}]$ (see eq. II.B.2). Making this substitution into eq. (4) and proceeding with the algebra
$5\left(d s^{\prime}\right)^{2}=[[F][d X]]^{T}[[F][d X]]=[d X]^{T}[F]^{T}[F][d X]$
$6\left(d s^{\prime}\right)^{2}-\left(d s^{\prime}\right)^{2}=[d X]^{T}[F]^{T}[F][d X]-[d X]^{T}[I][d X]$
$7\left(d s^{\prime}\right)^{2}-\left(d s^{\prime}\right)^{2}=[d X]^{T}\left[[F]^{T}[F]-I\right][d X]$
$8 \quad \frac{1}{2}\left\{\left(d s^{\prime}\right)^{2}-\left(d s^{\prime}\right)^{2}\right\}=\left(\frac{1}{2}\right)[d X]^{T}\left[[F]^{T}[F]-I\right][d X] \equiv[d X]^{T}[E][d X]$
$9[E] \equiv\left(\frac{1}{2}\right)\left[[F]^{T}[F]-I\right]=$ finite strain tensor

IIIDeformation paths

Consider two different finite strains described by the following two coordinate transformation equations:

A $\left[\begin{array}{l}x_{1}{ }_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a_{1} x+b_{1} y \\ c_{1} x+d_{1} y\end{array}\right]=\left[F_{1}\right][X]$
В $\left[\begin{array}{l}x_{2}{ }_{2} \\ y_{2}\end{array}\right]=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a_{2} x+b_{2} y \\ c_{2} x+d_{2} y\end{array}\right]=\left[F_{2}\right][X]$
Deformation 2
Now consider deformation 3, where deformation1 is acted upon (followed) by deformation 2 (i.e., deformation gradient matrix F1 first acts on $[\mathrm{X}]$, and then F 2 acts on $[\mathrm{F} 1][\mathrm{X}]$)

C $\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}a_{2} a_{1}+b_{2} c_{1} & a_{2} b_{1}+b_{2} d_{1} \\ c_{2} a_{1}+d_{2} c_{1} & c_{2} b_{1}+d_{2} d_{1}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ Deformation 3 Next consider deformation 4, where deformation 2 is acted upon (followed) by deformation 1 (i.e., deformation gradient matrix F2 first acts on $[\mathrm{X}]$, and then F 1 acts on $[F 2][\mathrm{X}]$.
$\mathbf{D}\left[\begin{array}{l}x^{\prime \prime \prime} \\ y^{\prime \prime \prime}\end{array}\right]=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\ c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

E A comparison of the net deformation gradient matrices in C and D shows they generally are different. Hence, the net deformation in a sequence of finite strains depends on the order of the deformations. (If the b and c terms [the off-diagonal terms] are small, then the deformations are similar)
Coordinate Transformation 1
$\left[\begin{array}{l}x \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Coordinate Transformation 2

Coordinate transformation 3 (transformation 1 followed by transformation 2)

Coordinate transformation 4 (transformation 2 followed by transformation 1)

IV Infinitesimal strain and the infinitesimal strain tensor [ε]
A What is infinitesimal strain?
Deformation where the displacement derivatives are small relative to one (i.e., the terms in the corresponding displacement gradient matrix $\left[J_{u}\right]$ are very small), so that the products of the derivatives are very small and can be ignored.

B Why consider infinitesimal strain if it is an approximation?
1 Many important geologic deformations are small (and largely elastic) over short time frames (e.g., fracture earthquake deformation, volcano deformation).

2 The terms of the infinitesimal strain tensor [ε] have clear geometric meaning (clearer than those for finite strain)
3 Infinitesimal strain is much more amenable to sophisticated mathematical treatment than finite strain (e.g., elasticity theory).
4 The net deformation for infinitesimal strain is independent of the deformation sequence.
5 Example

$$
F 5=\left[\begin{array}{cc}
{[1.02} & 0.01 \\
0 & 1.01
\end{array}\right] \quad F 6=\left[\begin{array}{cc}
{[1.01} & 0 \\
0 & 1.02
\end{array}\right] \quad J_{u} 5=\left[\begin{array}{cc}
{[0.02} & 0.01] \\
0 & 0.01
\end{array}\right] \quad J_{u} 6=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.02
\end{array}\right]
$$

Deformation 5 followed by deformation 6 gives deformation 7:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1.01 & 0.00 \\ 0.00 & 1.02\end{array}\right]\left[\begin{array}{ll}1.02 & 0.01 \\ 0.00 & 1.01\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1.0302 & 0.0100 \\ 0.0000 & 1.0302\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
Deformation 6 followed by deformation 5 gives deformation "7a": $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1.02 & 0.011 \\ 0.00 & 1.01\end{array}\right]\left[\begin{array}{ll}1.01 & 0.00 \\ 0.00 & 1.02\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1.0302 & 0.0101 \\ 0.0000 & 1.0302\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

The net deformation is essentially the same in the two cases.

C The infinitesimal strain tensor (Taylor series derivation)
Consider the displacement of two neighboring points, where the distance from point 0 to point 1 initially is given by dx and dy . Point 0 is displaced by an amount u^{0}, and we wish to find u^{1}. We use a truncated Taylor series; it is linear in dx and dy (dx and dy are only raised to the first power).
$1 u_{x}^{1}=u_{x}^{0}+\frac{\partial u_{x}}{\partial x} d x+\frac{\partial u_{x}}{\partial y} d y+\ldots$
$2 u_{y}{ }^{1}=u_{y}^{0}+\frac{\partial u_{y}}{\partial x} d x+\frac{\partial u_{y}}{\partial y} d y+\ldots$
These can be rearranged into a matrix format:

Now split $\left[J_{u}\right]$ into two matrices: the symmetric infinitesimal strain matrix $[\varepsilon]$, and the anti-symmetric rotation matrix $[\omega]$ by using $\left[{ }_{J}\right]^{T}$,

$$
\begin{aligned}
& {\left[J_{u}\right]=\left[\begin{array}{ll}
e & f
\end{array}\right], \quad\left[J_{u}\right]^{T}=\left[\begin{array}{ll}
e & g \\
g & h
\end{array}\right],} \\
& {\left[\begin{array}{c}
J_{u}+J_{u}{ }_{u}{ }^{T}
\end{array}\right]=\left[\begin{array}{ll}
e+e & f+g \\
g+f & h+h
\end{array}\right], \quad\left[J_{u}-J_{u}{ }^{T}\right]=\left[\begin{array}{cc}
0 & f-g \\
g-f & 0
\end{array}\right]}
\end{aligned}
$$

$4\left[J_{u}\right]=\frac{1}{2}\left[J_{u}+J_{u}\right]+\frac{1}{2}\left[J_{u}{ }^{T}-J_{u}{ }^{T}\right]=\frac{1}{2}\left[J_{u}+J_{u}{ }^{T}\right]+\frac{1}{2}\left[J_{u}-J_{u}{ }^{T}\right]=[\varepsilon]+[\omega]$
Now the displacement expression can be expanded using [ε] and [ω]
$\left.5[\varepsilon]=\frac{1}{2}\left(\begin{array}{ll}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{x}}{\partial x}\right) & \left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \\ \left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) & \left(\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{y}}{\partial y}\right)\end{array}\right)\right]$
$[\omega]=\frac{1}{2} \left\lvert\, \begin{gathered}0 \\ -\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right)\end{gathered}\right.$

Equations (3) and (5) show that the deformation can be decomposed into a translation, a strain, and a rotation.

D Geometric interpretation of the infinitesimal strain components

Infinitesimal Deformation of Line Elements $A B$ and $A D$

 (modified from Chou and Pagano, 1967)

Positive angles measured counterclockwise

Line length changes

$\varepsilon_{X x}=\frac{A^{\prime} D^{\prime}-A D}{A D}-\frac{\left(d x+\frac{\partial u_{x}}{\partial x} d x\right)-d x}{d x}=\frac{\partial u_{x}}{\partial x}$
$\varepsilon_{y y}=\frac{A^{\prime} B^{\prime}-A B^{-}}{A B} \frac{\left(d y+\frac{\partial u_{y}}{\partial y} d y\right)-d y}{d y}=\frac{\partial u_{y}}{\partial y}$

Angle changes

$\tan \Psi_{1}=\frac{\frac{\partial u_{x}}{\partial y} d y}{\frac{d y}{}}=\frac{\partial u_{x}}{\partial y}{ }^{-} \Psi_{1}$ if $\frac{\partial u_{x}}{\partial y}$ is small
$\tan \Psi_{2}=\frac{\frac{\partial u_{y}}{\partial x} d x}{d x}=\frac{\partial u_{y}}{\partial x}-\Psi_{2}$ if $\frac{\partial u_{y}}{\partial x}$ is small
$\Psi=\Psi_{1}-\Psi_{2}=$ change in right angle (the minus sign accounts for Ψ_{2} being negative)
$\gamma=\tan \Psi \quad \varepsilon_{x y}=\varepsilon_{y x}=(1 / 2) \tan \Psi$
$\gamma=$ engineering shear strain $\quad \varepsilon=$ tensor shear strain

Infinitesimal Strains

$d x$

E Relationship between [ε] and [E]
From eq. II.B.9, [E] is defined in terms of deformation gradients:
$1 \quad[E] \equiv\left(\frac{1}{2}\right)\left[[F]^{T}[F]-I\right]=$ finite strain tensor
The tensor [E] also can be solved for in terms of displacement gradients because $F=J_{u}+I$.
$2 \quad[E]=\left(\frac{1}{2}\right)\left[\left[J_{u}+I\right]^{T}\left[J_{u}+I\right]-I\right]$

3

$5[E]=\left(\frac{1}{2}\right) \left\lvert\, \begin{array}{ll}{\left[\left(\frac{\partial u_{x}}{d x}+1\right)()\left(\frac{\partial u_{x}}{d x}+1\right)+\left(\frac{\partial u_{y}}{d x}\right)\left(\frac{\partial u_{y}}{d x}\right)-1\right.} & \left(\frac{\partial u_{x}}{d x}+1\right)\left(\left(\frac{\partial u_{x}}{d y}\right)+\left(\frac{\partial u_{y}}{d x}\right)\left(\frac{\partial u_{y}}{d y}+1\right)\right] \\ \left(\frac{\partial u_{x}}{d y}\right)\left(\frac{\partial u_{x}}{d x}+1\right)+\left(\frac{\partial u_{y}}{d y}+1\right)\left(\frac{\partial u_{y}}{d x}\right) & \left.\left(\frac{\partial u_{x}}{d y}\right)\left(\frac{\partial u_{x}}{d y}\right)+\left(\frac{\partial u_{y}}{d y}+1\right)\left(\frac{\partial u_{y}}{d y}+1\right)-1\right]\end{array}\right.$
If the displacement gradients are small relative to 1 , then the products of the displacements are very small relative to 1 , and in infinitesimal strain theory they can be dropped, yielding [$[\varepsilon$]:

6

$$
[\varepsilon] \approx\left(\frac{1}{2}\right) \left\lvert\, \begin{array}{ll}
{\left[\left(\frac{\partial u_{x}}{d x}\right)+\left(\frac{\partial u_{x}}{d x}\right)\right.} & \left.\left(\frac{\partial u_{x}}{d y}\right)+\left(\frac{\partial u_{y}}{d x}\right)\right] \\
\left\lvert\,\left(\frac{\partial u_{x}}{d y}\right)+\left(\frac{\partial u_{y}}{d x}\right)\right. & \left.\left(\frac{\partial u_{y}}{d y}\right)+\left(\frac{\partial u_{y}}{d y}\right)\right]=\frac{1}{2}\left[\left[J_{u}\right]+\left[J_{u}\right]^{T}\right]
\end{array}\right.
$$

This suggests that for multiple deformations, infinitesimal strains might be obtained by matrix addition (i.e., linear superposition) rather than by matrix multiplication; the former is simpler. Also see equation IV.C.5.

7 Example of IV.B.5: [ع] from superposed vs. sequenced deformations $F 5=\left[\begin{array}{cc}1.02 & 0.01 \\ 0 & 1.01\end{array}\right] \quad J_{u} 5=\left[\begin{array}{cc}0.02 & 0.01 \\ 0 & 0.01\end{array}\right] \quad F 6=\left[\begin{array}{cc}1.01 & 0 \\ 0 & 1.02\end{array}\right] \quad J_{u} 6=\left[\begin{array}{cc}0.01 & 0 \\ 0 & 0.02\end{array}\right]$
a Linear superposition, assuming infinitesimal strain (approx.)

"F5 = [1.02 0.01;0.00 1.01]	»F6 = [1.01 0.00;0.00 1.02]
F5 =	$\mathrm{F} 6=$
$1.0200 \quad 0.0100$	1.01000
01.0100	$0 \quad 1.0200$
$E 5=\frac{1}{2}\left[[F 5]^{T}[F 5]-I\right]$	$E 6=\frac{1}{2}\left[[F 6]^{T}[F 6]-I\right]$
»E5 = 0.5*(F5'*F5-eye(2))	"E6 $=0.5^{*}$ (F6'*F6-eye(2))
E5 =	E6 =
0.02020 .0051	0.01010
$0.0051 \quad 0.0101$	$0 \quad 0.0202$
$\left(\approx \frac{1}{2}\left[\left[J_{u} 5\right]+\left[J_{u} 5\right]^{T}\right]\right)$	$\left(\approx \frac{1}{2}\left[\left[{ }^{J_{u}} 6\right]+\left[\begin{array}{ll}J_{u} & 6\end{array}\right]^{T}\right]\right)$

"E7 = E5 + E6
E7 =
$\begin{array}{cc}0.0302 & 0.0051 \\ 0.0051 & 0.0303\end{array}$
$0.0051 \quad 0.0303$
b Sequenced deformation (exact) »F7 = F6*F5

$$
\left[E_{7}\right] \equiv\left(\frac{1}{2}\right)\left[\left[F_{7}\right]^{T}\left[F_{7}\right]-I\right]
$$

See eq. IV.B. 5
F7 =

Linear superposition of strains (Infinitesimal approximation)

$$
» E 7=0.5^{*}(F 7 \text { '*F7-eye(2)) } \quad \text { Convert def. gradients to strain }
$$

Good match with approximation

$$
\begin{aligned}
& 1.0302 \quad 0.0101 \\
& 0 \quad 1.0302 \\
& \text { E7 = } \\
& 0.0307 \quad 0.0052 \\
& 0.0052 \quad 0.0307
\end{aligned}
$$

8 Recap

The infinitesimal strain tensor can be used to find the change in the square of the length of a deformed line segment connecting two nearby points separated by distances $d x$ and $d y$, $\frac{1}{2}\left\{\left(d s^{\prime}\right)^{2}-\left(d s^{\prime}\right)^{2}\right\}=[d X]^{T}[\varepsilon][d X]$
and, with the rotation tensor, to find the change in displacement of two points in a deformed medium that are initially separated by distances $d x$ and $d y$:

$$
[\Delta U]=\frac{1}{2}[\varepsilon][d X]+\frac{1}{2}[\omega][d X]
$$

9 For infinitesimal strains the displacements are essentially the same no matter whether the pre- or post-deformation positions are used.

