
GG303 Lecture 15 8 / 2 4 / 0 3 1

Stephen Martel 1 5 - 1 University of Hawaii

FINITE STRAIN AND INFINITESIMAL STRAIN

I Main Topics (on infinitesimal strain)
A The finite strain tensor [E]
B Deformation paths for finite strain
C Infinitesimal strain and the infinitesimal strain tensor ε

I I The finite strain tensor [E]
A Used to find the changes in the squares of lengths of line segments

in a deformed body.
B Definition of [E] in terms of the deformation gradient tensor [F]

Recall the coordinate transformation equations:
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Now dX’ can be expressed as [F][dX] (see eq. II.B.2).  Making this
substitution into eq. (4) and proceeding with the algebra
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I I I Deformation paths
Consider two different finite strains described by the following two
coordinate transformation equations:
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Deformation 2

Now consider deformation 3, where deformation1 is acted upon
(followed) by deformation 2 (i.e., deformation gradient matrix F1
first acts on [X], and then F2 acts on [F1][X])
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2 1 2 1 2 1 2 1 Deformation 3
Next consider deformation 4, where deformation 2 is acted upon
(followed) by deformation 1 (i.e., deformation gradient matrix F2
first acts on [X], and then F1 acts on [F2][X].
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E A comparison of the net deformation gradient matrices in C and D
shows they generally are different.  Hence, the net deformation in a                                     
sequence of finite strains depends on the order of the deformations.                                                                                                          
(If the b and c terms [the off-diagonal terms] are small, then the
deformations are similar)
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IV Infinitesimal strain and the infinitesimal strain tensor [ε ]

A What is infinitesimal strain?

Deformation where the displacement derivatives are small relative

to one (i.e., the terms in the corresponding displacement gradient
matrix J

u[ ]are very small), so that the products of the derivatives

are very small and can be ignored.

B Why consider infinitesimal strain if it is an approximation?

1 Many important geologic deformations are small (and largely

elastic) over short time frames (e.g., fracture earthquake

deformation, volcano deformation).

2 The terms of the infinitesimal strain tensor [ε] have clear                     

geometric meaning (clearer than those for finite strain)
3 Infinitesimal strain is much more amenable to sophisticated

mathematical treatment than finite strain (e.g., elasticity
theory).

4 The net deformation for infinitesimal strain is independent of the
deformation sequence.

5 Example
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Deformation 6 followed by deformation 5 gives deformation “7a”:
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The net deformation is essentially the same in the two cases.
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C The infinitesimal strain tensor (Taylor series derivation)

Consider the displacement of two neighboring points, where the

distance from point 0 to point 1 initially is given by dx and dy.  Point

0 is displaced by an amount u0, and we wish to find u1.  We use a

truncated Taylor series; it is linear in dx and dy (dx and dy are only          

raised to the first power).
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These can be rearranged into a matrix format:
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matrix [ε], and the anti-symmetric rotation matrix            [ω] by using J
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Now the displacement expression can be expanded using [ε] and  [ω]
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Equations (3) and (5) show that the deformation can be decomposed                                                        

into a translation, a strain, and a rotation.                                                                  

D Geometric interpretation of the infinitesimal strain components
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Infinitesimal Deformation of Line Elements AB and AD
(modified from Chou and Pagano, 1967)
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∂x dx

u
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∂y dy

tanΨ1 =               =           ¯ Ψ1  if          is small

tanΨ2 =               =           ¯ Ψ2  if          is small

Ψ =  Ψ1 − Ψ2�= change in right angle� (the minus sign accounts for  Ψ2 being negative)

γ = tan Ψ�� εxy = εyx = (1/2)  tan Ψ

γ = engineering shear strain� ε = tensor shear strain
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Positive angles
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dux
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Normal strain exx�
�
exx = ∂ux/∂x

Normal strain eyy�
�
eyy = ∂uy/∂y

Shear strains exy, eyx †�
�
exy = eyx � = 1/2(change in right angle)
�

�� = 1/2(Ψ1 - Ψ2)*�
�
But for small angles, Ψ = tanΨ�
�
exy = eyx � = 1/2(∂ux/∂y+∂uy/∂x)�
(This is pure shear; there is no rotation)

Rotations ωyx, ωxy *�
�
ωxy = ωyx � = (change in right angle)�
�
�� = 1/2(Ψ1 + Ψ2)*�
�
But for small angles, Ψ = tanΨ�
�
ωxy = -ωyx � = 1/2(∂uy/∂x-∂ux/∂y)�
�
† The shear strain exy = eyx is half the �
   shear strain γ�

* Positive angles are measured about  �
   the z-axis using a right hand rule.  In�
  (b) the angle Ψ2 is clockwise �
  (negative), but dux is positive.  In (d)�
  Ψ2 is counter-clockwise, and dux< 0.

Ψ1

Ψ1

Ψ2

Ψ2

Infinitesimal Strains

Undeformed

Note that "simple shear strain" involves a�
shear and a rotation!  Here Ψ1 is zero �
                                   and Ψ2 is negative.

Ψ2

Deformed

a

b

c

d
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E Relationship between [ε] and [E]

From eq. II.B.9, [E] is defined in terms of deformation gradients:

1 E F F I finite strain tensorT[ ] ≡ 
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gradients because F Ju I = + .
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If the displacement gradients are small relative to 1, then the         
products of the displacements are very small               relative to 1, and in                 
infinitesimal strain theory they can be dropped, yielding [ε] :
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This suggests that for multiple deformations, infinitesimal strains                                                                           
might be obtained by matrix addition (i.e., linear superposition                                 )                                
rather than by matrix multiplication; the former is simpler.  Also
see equation IV.C.5.
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7 Example of IV.B.5: [ε] from superposed vs. sequenced deformations

F5
1 02 0 01

0 1 01
=






. .

.
  J

u
5

0 02 0 01

0 0 01
=






. .

.    
F6

1 01 0

0 1 02
=
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.
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u
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0 01 0

0 0 02
=






.

.

a Linear superposition, assuming infinitesimal strain (approx.)
»F5 = [1.02 0.01;0.00 1.01]

F5 =

  1.0200    0.0100
           0    1.0100

»F6 = [1.01 0.00;0.00 1.02]

F6 =

  1.0100               0
           0      1.0200

E F F I
T

5
1
2

5 5= [ ] [ ] −[ ] E F F I
T

6
1
2

6 6= [ ] [ ] −[ ]
»E5 = 0.5*(F5'*F5-eye(2))

E5 =

  0.0202       0.0051
  0.0051   0.0101

» E6 = 0.5*(F6'*F6-eye(2))

E6 =

  0.0101                0
           0   0.0202

≈ [ ] + [ ]
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2

5 5J
u

J
u
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≈ [ ] + [ ]











1
2

6 6J
u

J
u

T

»E7 = E5 + E6     Linear superposition of strains

E7 =     (Infinitesimal approximation)

    0.0302    0.0051
    0.0051    0.0303

b Sequenced deformation (exact) E F
T

F I
7

1
2 7 7[ ] ≡ 

 [ ] [ ] −






»F7 = F6*F5     See eq. IV.B.5

F7 =

1.0302    0.0101
         0    1.0302

»E7 = 0.5*(F7'*F7-eye(2))     Convert def. gradients to strain

E7 =     Good match with approximation
   0.0307    0.0052
   0.0052    0.0307
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8 Recap

The infinitesimal strain tensor can be used to find the change in                     
the square of the length of a deformed line segment connecting
two nearby points separated by distances dx and dy,
1
2

2 2
ds ds dX dX

T
' '( ) − ( ){ } = [ ] [ ][ ]ε

and, with the rotation tensor, to find the change in displacement
of two points in a deformed medium that are initially separated
by distances dx and dy:

∆U dX dX[ ] = [ ][ ] + [ ][ ]1
2

1
2

ε ω

9 For infinitesimal strains the displacements are essentially the
same no matter whether the pre- or post-deformation positions
are used.


