BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

- I Main Topics (see chapters 14 and 18 of Means, 1976)
 - A Fundamental principles of continuum mechanics
 - B Position vectors and coordinate transformation equations
 - C Displacement vectors and displacement equations
 - D Deformation
- II Fundamental principles of continuum mechanics
 - A Relates natural world to the realm of mathematics
 - B Densities of mass, momentum, and energy exist (no "holes")
 - C Number of particles is sufficiently large that the notion of an average bulk material behavior is meaningful
 - D Examples of continuous properties

1 Density
$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V}$$
 So certain derivatives have to exist

- 2 Hydraulic conductivity ("permeability")
- E Scale matters (see B, C, and D)

Volume

E Variability

- 1 Heterogeneity: material property depends on position
- 2 Anisotropy: material property depends on orientation
- II Position vectors and coordinate transformation equations
 - A X = initial (undeformed) position
 - B X' = final (current, or deformed) position (at time Δt)
 - C Coordinate transformation equations
 - 1 X' = f(X) Lagrangian: final position set in terms of initial
 - 2 X = g(X') Eulerian: initial position set in terms of final

- III Displacement vector (U)
 - A U = X' X
 - 1 x-component: u_x , u_1 , or just u
 - $2 \hspace{0.1in} \text{y-component:} \hspace{0.1in} u_{y} \text{,} \hspace{0.1in} u_{2} \text{, or just } v \\$
 - 3 z-component: u_z , u_3 , or just w
 - B U = U(X) Lagrangian: displacement in terms of initial position
 - C U = U(X') Eulerian: displacement in terms of final position
- IV Deformation: rigid body motion + change in size and/or shape
 - A Rigid body translation
 - 1 No change in the length of line connecting any points
 - 2 All points displaced by an equal vector (equal amount and direction); no displacement of points relative to one another
 - 3 [X'] = [U] + [X] matrix addition (U is a constant)
 - B Rigid body rotation
 - 1 No change in the length of line connecting any points
 - 2 All points rotated by an equal amount about a common axis; no angular displacement of points relative to one another
 - 3 [X'] = [a][X] matrix multiplication; rows in [a] are dir. cosines!
 - C Change in size and /or shape (distortional strain)
 - 1 The lengths of at least some line segments connecting points in a body change (i.e., the relative positions of points changes)
 - 2 U is not a constant throughout the body (i.e., <u>U varies</u>)
 - 3 Change in linear dimension
 - a Extension (or elongation) $\varepsilon = \frac{\Delta L}{L_o} = \frac{L_1 L_o}{L_o}$ <u>dimensionless</u>!
 - b Stretch $S = \frac{L_1}{L_o} = \frac{L_o}{L_o} + \frac{L_1 L_o}{L_o} = 1 + \varepsilon$ dimensionless!
 - c Quadratic elongation $\lambda = \left(\frac{L_1}{L_o}\right)^2 = S^2 = (1 + \varepsilon)^2$ <u>dimensionless</u>!
 - 4 Change in right angles (change in angle between originally orthogonal lines): $\gamma = \tan \psi$ Note: for small angular changes, $\tan \psi \rightarrow \psi$

13-2

Stephen Martel

 $\Delta x \rightarrow 0$ $\Delta x \rightarrow 0$

University of Hawaii

Rigid Body Motion

- D Change in volume (dilational strain)
 - 1 Dilation $\Delta = \frac{\Delta V}{V_o} = \frac{V_1 V_o}{V_o}$ <u>dimensionless!</u>
 - 2 Example 1: Consider a rectangular box with sides of length a_0 , b_0 , c_0 , the sides lying along the 1,2,3 axes. Its volume is $a_0b_0c_0$, or

$$V_0 = \begin{vmatrix} a_o & 0 & 0 \\ 0 & b_o & 0 \\ 0 & 0 & c_o \end{vmatrix} = a_o b_o c_o$$

So V_0 is a determinant.

Suppose the box is stretched along the 1,2,3 axes such that its new dimensions are a1, b1, c1. Its new volume V1 is

$$V_1 = \begin{vmatrix} a_1 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & c_1 \end{vmatrix} = \begin{vmatrix} a_0(1+\varepsilon_1) & 0 & 0 \\ 0 & b_0(1+\varepsilon_2) & 0 \\ 0 & 0 & c_0(1+\varepsilon_3) \end{vmatrix} = a_1 b_1 c_1$$

$$V_1 = a_0 b_0 c_0 \begin{vmatrix} (1 + \varepsilon_1) & 0 & 0 \\ 0 & (1 + \varepsilon_2) & 0 \\ 0 & 0 & (1 + \varepsilon_3) \end{vmatrix} = a_0 b_0 c_0 \begin{vmatrix} S_1 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_3 \end{vmatrix} = a_0 b_0 c_0 S_1 S_2 S_3$$

$$\Delta = \frac{V_1 - V_0}{V_0} = \frac{a_0 b_0 c_0 S_1 S_2 S_3 - a_0 b_0 c_0}{a_0 b_0 c_0} = S_1 S_2 S_3 - 1 \approx \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

(The expression at the right side applies for small strains [<~1%])