BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

I Main Topics (see chapters 14 and 18 of Means, 1976)
A Fundamental principles of continuum mechanics
B Position vectors and coordinate transformation equations
C Displacement vectors and displacement equations
D Deformation
II Fundamental principles of continuum mechanics
A Relates natural world to the realm of mathematics
B Densities of mass, momentum, and energy exist (no "holes")
C Number of particles is sufficiently large that the notion of an average bulk material behavior is meaningful
D Examples of continuous properties
1 Density $\rho=\lim _{\Delta V \rightarrow 0} \frac{\Delta m}{\Delta V}$
So certain derivatives have to exist
2 Hydraulic conductivity ("permeability")
E Scale matters (see B, C, and D)

Volume

E Variability
1 Heterogeneity: material property depends on position
2 Anisotropy: material property depends on orientation
II Position vectors and coordinate transformation equations
A $\mathrm{X}=$ initial (undeformed) position
B $X^{\prime}=$ final (current, or deformed) position (at time Δt)
C Coordinate transformation equations
$1 X^{\prime}=f(X)$ Lagrangian: final position set in terms of initial
$2 X=g\left(X^{\prime}\right)$ Eulerian: initial position set in terms of final

III Displacement vector (U)
A $U=X^{\prime}-X$
1 x-component: u_{x}, u_{1}, or just u
2 y-component: u_{y}, u_{2}, or just v
3 z-component: u_{z}, u_{3}, or just w
B $\quad \mathbf{U}=\mathbf{U}(\mathbf{X}) \quad$ Lagrangian: displacement in terms of initial position
C $U=U\left(X^{\prime}\right) \quad$ Eulerian: displacement in terms of final position
IV Deformation: rigid body motion + change in size and/or shape
A Rigid body translation
1 No change in the length of line connecting any points
2 All points displaced by an equal vector (equal amount and direction); no displacement of points relative to one another
$3\left[\mathrm{X}^{\prime}\right]=[\mathrm{U}]+[\mathrm{X}] \quad$ matrix addition (U is a constant)
B Rigid body rotation
1 No change in the length of line connecting any points
2 All points rotated by an equal amount about a common axis; no angular displacement of points relative to one another
3 [$\left.\mathrm{X}^{\prime}\right]=[\mathrm{a}][\mathrm{X}] \quad$ matrix multiplication; rows in [a] are dir. cosines!
C Change in size and /or shape (distortional strain)
1 The lengths of at least some line segments connecting points in a body change (i.e., the relative positions of points changes)
2 U is not a constant throughout the body (i.e., $\underline{\mathrm{U}}$ varies)
3 Change in linear dimension
a Extension (or elongation) $\varepsilon=\frac{\Delta L}{L_{o}}=\frac{L_{1}-L_{o}}{L_{o}} \quad$ dimensionless!
b Stretch $S=\frac{L_{1}}{L_{o}}=\frac{L_{o}}{L_{o}}+\frac{L_{1}-L_{o}}{L_{o}}=1+\varepsilon \quad$ dimensionless!
c Quadratic elongation $\lambda=\left(\frac{L_{1}}{L_{o}}\right)^{2}=S^{2}=(1+\varepsilon)^{2} \quad$ dimensionless!
4 Change in right angles (change in angle between originally orthogonal lines): $\gamma=\tan \psi \quad$ Note: for small angular changes, $\tan \psi \rightarrow \psi$

Example of homogeneous strain in one dimension

Example of inhomogeneous strain in one dimension

Rigid Body Motion

Rigid Body Translation

Rigid Body Rotation

Basic Measures of Strain

Elongation
\qquad

L_{0}

Dilation

Stephen Martel

$$
\gamma=\tan \Psi
$$

D Change in volume (dilational strain)
1 Dilation $\Delta=\frac{\Delta V}{V_{o}}=\frac{V_{1}-V_{o}}{V_{o}}$
dimensionless!
2 Example 1: Consider a rectangular box with sides of length a_{o}, b_{o}, c_{o}, the sides lying along the 1,2,3 axes. Its volume is aoboco, or
$V_{0}=\left|\begin{array}{ccc}a_{o} & 0 & 0 \\ 0 & b_{o} & 0 \\ 0 & 0 & c_{o}\end{array}\right|=a_{o} b_{o} c_{o}$
So V_{0} is a determinant.
Suppose the box is stretched along the $1,2,3$ axes such that its new dimensions are $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$. Its new volume V_{1} is

$$
\begin{aligned}
& V_{1}=\left|\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & b_{1} & 0 \\
0 & 0 & c_{1}
\end{array}\right|=\left|\begin{array}{ccc}
a_{0}\left(1+\varepsilon_{1}\right) & 0 & 0 \\
0 & b_{0}\left(1+\varepsilon_{2}\right) & 0 \\
0 & 0 & c_{0}\left(1+\varepsilon_{3}\right.
\end{array}\right|=a_{1} b_{1} c_{1} \\
& V_{1}=a_{0} b_{0} c_{0}\left|\begin{array}{ccc}
\left(1+\varepsilon_{1}\right) & 0 & 0 \\
0 & \left(1+\varepsilon_{2}\right) & 0 \\
0 & 0 & \left(1+\varepsilon_{3}\right)
\end{array}\right|=a_{0} b_{0} c_{0}\left|\begin{array}{ccc}
S_{1} & 0 & 0 \\
0 & S_{2} & 0 \\
0 & 0 & S_{3}
\end{array}\right|=a_{0} b_{0} c_{0} S_{1} S_{2} S_{3} \\
& \Delta=\frac{V_{1}-V_{0}}{V_{0}}=\frac{a_{0} b_{0} c_{0} S_{1} S_{2} S_{3}-a_{0} b_{0} c_{0}}{a_{0} b_{0} c_{0}}=S_{1} S_{2} S_{3}-1 \approx \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
\end{aligned}
$$

(The expression at the right side applies for small strains [<~1\%])

