SPHERICAL PROJECTIONS (I)

Schedule Updates and Reminders: Bring tracing paper \&needles for Lab 5

I Main Topics
A What is a spherical projection?
B Spherical projection of a line
C Spherical projection of a plane
II What is a spherical projection?
A A 2-D projection for describing the orientation of 3-D features. A spherical projection shows where lines or planes that intersect the surface of a (hemi)sphere, provided that the lines/planes also pass through the center of the (hemi)sphere.
B Uses in geology and geophysics
1 Maps
2 Representation of the orientation of planar features (e.g., bedding, fractures, crystal faces)
3 Representation of the orientation of linear features (e.g., fold axes)
4 Representation of first motion data from earthquakes
C Great circle: intersection of the surface of a sphere with a plane that passes through the center of the sphere (e.g., lines of longitude)
D Small circle: intersection of the surface of a sphere with a plane that does not pass through the center of the sphere (e.g., lines of latitude). A line rotated about an axis traces a small circle too.
III Spherical projection of a line
A Technique (see handout):
1 A line is at the intersection of two planes: 1) a vertical plane coinciding with the trend of the line and (2) an inclined plane coinciding with the plunge of the line.
2 Trend and plunge: The point representing a line plots away from the center of the spherical plot in the direction of the trend of the line.
The trend of a line is measured along a horizontal great circle. The plunge of the line is measured along a vertical great circle by counting down from the horizontal plane.
3 Rake: If the strike and dip of a plane is specified, the rake (pitch) of a line in the plane can be measured along the cyclographic trace of the
great circle representing that plane. Rake is measured from the direction of strike.
B Plane containing two lines: Two intersecting lines uniquely define a plane.
The cyclographic trace of the great circle representing that plane will pass through the points representing the lines.
IV Spherical projection of a plane
A A plane plots as the cyclographic trace of a great circle
B Strike and dip: The strike is measured around the perimeter of the primitive circle. The dip of the line is measured along a vertical great circle perpendicular to the line of strike.
C Pole to a plane
1 Pole can be plotted directly using its trend and plunge
2 Pole also can be plotted 90° along the cyclographic trace of a great circle that is perpendicular to the plane.
D Intersection of two planes
1 Two planes intersect in a line, which projects as a point in a spherical projection. This point is at the intersection of the cyclographic traces of the two planes.
2 The intersection is also 90° from the plane (great circle) containing the poles to the two planes; these 90° angles are measured along the great circles representing the planes containing the poles. This procedure is analogous to finding the cross product between poles.

Equal-Angle (Sterographic) Projection of a Line
Fig. 8.1

$$
\frac{r}{\mathrm{R}}=\tan \left[\left(90^{\circ}-\phi\right) / 2\right] \quad \mathrm{r}=\mathrm{R}\left(\tan \left[\left(90^{\circ}-\phi\right) / 2\right]\right) \quad \phi=90^{\circ}-2\left(\tan ^{-1}[\mathrm{r} / \mathrm{R}]\right)
$$

Stereographic (Equal-angle) Projections (I)

FIg. 8.2

Cross section view along strike of inclined plane
$O X=R \tan (\pi / 4-\psi / 2)$

View down on projection plane (Lower hemisphere projection)
$O Y=R \tan (\pi / 4-\phi / 2)$

Orientation of a plane

Stereographic (Equal-angle) Projections (II)

Fig. 8.3

Line of intersection of two planes

Angle δ between two planes

Cylindrical fold axis
by intersecting bedding planes β diagram

