VECTORS, TENSORS, AND MATRICES

I Main Topics
A Vector length and direction
B Vector Products
C Tensor notation vs. matrix notation
II Vector Products
A Vector length: $|\mathbf{A}|=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z}{ }^{2}}$
B A vector A can be defined by its length $|A|$ and the direction of a unit vector a that is in the same direction as A. The unit vector a has x, y, z components $A_{x} \mathbf{i} /|\mathbf{A}|, A_{y} \mathbf{j} /|\mathbf{A}|$, and $A_{z} \mathbf{k} /|\mathbf{A}|$, respectively, where i, \mathbf{j}, and \mathbf{k} are unit vectors along the x, y, and z axes, respectively. $\mathbf{A}=|\mathbf{A}| \mathbf{a}$.

C Example: If $\mathbf{A}=\mathbf{0} \mathbf{i}+\mathbf{3} \mathbf{j}+\mathbf{4 k}$, then $|\mathbf{A}|=\sqrt{0^{2}+3^{2}+4^{2}}=\sqrt{25}=5$, and $a=\frac{0}{5} i+\frac{3}{5} j+\frac{4}{5} k$.

II Products of Vectors
A Dot product: $\mathbf{A} \cdot \mathbf{B}=M$
$1 A$ and B are vectors, and M is a scalar corresponding to a length.
2 If unit vectors \mathbf{a} and \mathbf{b} parallel vectors \mathbf{A} and \mathbf{B}, respectively, and the angle from \mathbf{a} to \mathbf{b} (and from \mathbf{A} to \mathbf{B}) is $\theta_{a b}$, then, recalling that $\cos \theta_{a b}=\cos \left(-\theta_{a b}\right)=\cos \left(\theta_{b a}\right)=\cos (\theta) \ldots$
a $\mathbf{a} \cdot \mathbf{b}=\cos \theta=\mathbf{b} \cdot \mathbf{a}$
b $\quad \mathbf{A} \cdot \mathbf{B}=|\mathbf{A}| \mathbf{a} \cdot|\mathbf{B}| \mathbf{b}=|\mathbf{A}| \mathbf{B}|(\mathbf{a} \cdot \mathbf{b})=|\mathbf{A}| \mathbf{B}|(\cos \theta)$
c Example: If $\mathbf{A}=2 \mathbf{i}+0 \mathbf{j}+0 \mathbf{K}$, and $\mathbf{B}=\mathbf{0} \mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{0 K}, \mathbf{A} \cdot \mathbf{B}=(2)(2) \cos \left(90^{\circ}\right)=0$

3 If \mathbf{b} is a unit vector, then $\mathbf{A} \cdot \mathbf{b}$ (or $\mathbf{b} \cdot \mathbf{A}$) is the length of the projection of A onto the direction defined by b.

Angle corvention

4 Dot product tables of Cartesian basis vectors

	\mathbf{i}	\mathbf{j}	\mathbf{k}			$B_{x} \mathbf{i}$	$B_{y} \mathbf{j}$	$B_{z} \mathbf{k}$
$\mathbf{i} \bullet$	1	0	0		$A_{x} \mathbf{i}^{\bullet}$	$A_{x} B_{x}$	0	0
$\mathbf{j} \bullet$	0	1	0		$A_{y} \mathbf{j}^{\bullet}$	0	$A_{y} B_{y}$	0
$\mathbf{k} \bullet$	0	0	1		$A_{z} \mathbf{k}^{\bullet}$	0	0	$A_{z} B_{z}$

$5 \quad \mathbf{A} \cdot \mathbf{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right)\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
6 For unit vectors \mathbf{e}_{r} and \mathbf{e}_{s} along axes of a Cartesian frame
a $\mathbf{e}_{r} \cdot \mathbf{e}_{s}=1$ if $r=s$
b $\mathbf{e}_{r} \cdot \mathbf{e}_{s}=0$ if $r \neq s$
7 In Matlab, $\mathrm{C}=\mathbf{A} \cdot \mathbf{B}$ is performed as $\mathrm{C}=\mathrm{A}(:)^{* *} \mathrm{~B}(:)$ or $\mathrm{C}=\operatorname{sum}\left(\mathrm{A} .{ }^{*} \mathrm{~B}\right)$
8 Uses in geology for dot products: all kinds of projections
B Cross product: $\mathbf{A} \times \mathbf{B}=\mathbf{C}$
$1 C$ is a vector perpendicular to both A and B, so C is perpendicular to the plane containing A and B. C points in the direction of our thumb if the other fingers on your right hand first point in the direction of A and then curl to point in the direction of B. (i.e., A, B, and C form a right-handed set). As a result, $\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$.

2 If unit vectors \mathbf{a} and \mathbf{b} parallel vectors A and B , respectively, and the angle between \mathbf{a} and \mathbf{b} (and between \mathbf{A} and \mathbf{B}) is θ, then ...
a $\mathbf{a} \times \mathbf{b}=\sin \theta \mathbf{n}$, where \mathbf{n} is a unit vector normal to the \mathbf{a}, \mathbf{b} plane
b $\quad \mathbf{A} \times \mathbf{B}=|\mathbf{A}| \mathbf{a} \times|\mathbf{B}| \mathbf{b}=|\mathbf{A}| \mathbf{B}|(\mathbf{a} \times \mathbf{b})=|\mathbf{A}| \mathbf{B}|(\sin \theta) \mathbf{n}$
c Example: If $\mathbf{A}=2 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}$, and $\mathbf{B}=\mathbf{0} \mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{0 k}, \mathbf{A} \cdot \mathbf{B}=(2)(2) \sin \left(90^{\circ}\right) \mathbf{k}=4 \mathbf{k}$
3 The length (magnitude) of C is the area of the parallelogram defined by vectors A and B, where A and B are along adjacent side of the parallelogram. In the figure below, AxB points into the page, and BxA points out of the page.

4 Cross product tables of Cartesian basis vectors

	\mathbf{i}	\mathbf{j}	\mathbf{k}			$B_{x} \mathbf{i}$	$B_{y} \mathbf{j}$	$B_{z} \mathbf{k}$
$\mathbf{i} \times$	0	\mathbf{k}	$-\mathbf{j}$		$A_{x} \mathbf{i} \times$	$\mathbf{0}$	$A_{x} B_{y} \mathbf{k}$	$-A_{x} B_{z} \mathbf{j}$
$\mathbf{j} \times$	$-\mathbf{k}$	0	\mathbf{i}		$A_{y} \mathbf{j} \times$	$-A_{y} B_{x} \mathbf{k}$	$\mathbf{0}$	$A_{y} B_{z} \mathbf{i}$
$\mathbf{k} \times$	\mathbf{j}	$-\mathbf{i}$	0		$A_{z} \mathbf{k} \times$	$A_{z} B_{x} \mathbf{j}$	$-A_{z} B_{y} \mathbf{i}$	$\mathbf{0}$

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right)\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k}
\end{aligned}
$$

$6 \quad \mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
7 For unit vectors \mathbf{e}_{r} and \mathbf{e}_{s} along axes of a Cartesian frame
a $\mathbf{e}_{p} \times \mathbf{e}_{q}=\mathbf{e}_{r}$ if $p, q=1,2$ or 2,3 or 3,1
b $\mathbf{e}_{r} \times \mathbf{e}_{q}=-\mathbf{e}_{p}$ if $r, q=3,2$ or 2,1 or 1,3
b $\mathbf{e}_{p} \times \mathbf{e}_{q}=0$ if $p=q$
8 In Matlab, $\mathbf{C}=\mathbf{A} \times \mathbf{B}$ is performed as $\mathrm{C}=\operatorname{cross}(\mathrm{A}, \mathrm{B})$
9 Uses in geology for cross products: finding poles to planes in threepoint problems; finding fold axes from poles to bedding.

C Scalar triple product: $(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=V$
1 The vector triple product is a scalar (i.e., a number) that corresponds to a volume.

2 IVI is the volume of a parallelepiped with edges along A, B, and C . (BxC) gives the area of the base, and the dot product of this with A gives the base times the component of \mathbf{A} normal to the base (i.e., the base times the height). The absolute value of V guarantees that the volume is non-negative.

View of top/base of parallelepiped
View of side of parallelepiped

Basal area $=(C \sin \theta)(B)=1 \mathrm{BxCl}$

$3 V=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{A} \bullet\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|=\left|\begin{array}{ccc}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|=\begin{gathered}A_{x}\left(B_{y} C_{z}-B_{z} C_{y}\right)- \\ A_{y}\left(B_{x} C_{z}-B_{z} C_{x}\right)+ \\ A_{z}\left(B_{x} C_{y}-B_{y} C_{x}\right)\end{gathered}$
4 The determinant of a 3×3 matrix gives the volume of a parallelepiped.
5 In Matlab, $V=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ is performed as $\mathrm{V}=\operatorname{sum}\left(\mathrm{A}\right.$. ${ }^{*} \operatorname{cross}(\mathrm{~B}, \mathrm{C})$)
6 Use in geology: solutions of equations, estimating volume of ore bodies

7 If at least two of the vectors A, B, C are parallel to each other, then A, B, C cannot define a parallelepiped, at least two rows of the matrix in (3) are linearly dependent, and the determinant of (3) is zero, and the three planes defined by A, B, C will not intersect in a unique point
8 Proof that $\mathbf{C}=\mathbf{A} \times \mathbf{B}$ is perpendicular to the plane of \mathbf{A} and \mathbf{B}
a If C is not perpendicular to the AB plane, then C must be nonperpendicular to both A and C , i.e., $A \cdot C \neq 0$ and $A \cdot B \neq 0$.
b $\quad \mathbf{A} \cdot \mathbf{C}|=|\mathbf{A} \cdot(\mathbf{A} \times \mathbf{B})|=|\mathbf{B} \cdot(\mathbf{A} \times \mathbf{A})|=\mathbf{0}$
c $\quad \mathbf{B} \cdot \mathbf{C}|=|\mathbf{B} \cdot(\mathbf{A} \times \mathbf{B})|=|\mathbf{A} \cdot(\mathbf{B} \times \mathbf{B})|=\mathbf{0}$
d The postulate that C is not perpendicular to the $A B$ plane thus is disproved, so C is perpendicular to the $A B$ plane.

D Invariants
1 Quantities that do not depend on the orientation of a coordinate system.

2 Examples
a Dot product of two vectors (a length)
b Scalar triple product (a volume)

