VECTORS, TENSORS, AND MATRICES

- I Main Topics
 - A Vector length and direction
 - B Vector Products
 - C Tensor notation vs. matrix notation
- II Vector Products
 - A Vector length: $|\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$
 - B A vector **A** can be defined by its length **IAI** and the direction of a unit vector **a** that is in the same direction as **A**. The unit vector **a** has x,y,z components $A_x \mathbf{i}/|\mathbf{A}|, A_y \mathbf{j}/|\mathbf{A}|$, and $A_z \mathbf{k}/|\mathbf{A}|$, respectively, where **i**,**j**, and **k** are unit vectors along the x,y, and z axes, respectively. $\mathbf{A} = |\mathbf{A}|\mathbf{a}$.
 - C Example: If $\mathbf{A} = \mathbf{0i} + 3\mathbf{j} + 4\mathbf{k}$, then $|\mathbf{A}| = \sqrt{0^2 + 3^2 + 4^2} = \sqrt{25} = 5$, and $\mathbf{a} = \frac{\mathbf{0}}{5}\mathbf{i} + \frac{3}{5}\mathbf{j} + \frac{4}{5}\mathbf{k}$.
- II Products of Vectors
 - A Dot product: $\mathbf{A} \cdot \mathbf{B} = M$
 - 1 A and B are vectors, and M is a scalar corresponding to a length.
 - 2 If unit vectors **a** and **b** parallel vectors **A** and **B**, respectively, and the angle from **a** to **b** (and from **A** to **B**) is θ_{ab} , then, recalling that

$$\cos\theta_{ab} = \cos(-\theta_{ab}) = \cos(\theta_{ba}) = \cos(\theta) \dots$$

- **a** $\mathbf{a} \cdot \mathbf{b} = \cos\theta = \mathbf{b} \cdot \mathbf{a}$
- **b** $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| \mathbf{a} \cdot |\mathbf{B}| \mathbf{b} = |\mathbf{A}| \mathbf{B} | (\mathbf{a} \cdot \mathbf{b}) = |\mathbf{A}| \mathbf{B} | (\cos \theta)$
- c Example: If $\mathbf{A} = 2\mathbf{i} + 0\mathbf{j} + 0\mathbf{K}$, and $\mathbf{B} = 0\mathbf{i} + 2\mathbf{j} + 0\mathbf{K}$, $\mathbf{A} \cdot \mathbf{B} = (2)(2)\cos(90^{\circ}) = 0$

3 If b is a unit vector, then A • b (or b • A) is the length of the projection of A onto the direction defined by b.

4 Dot product tables of Cartesian basis vectors

	i	j	k		$B_{\chi}^{\mathbf{i}}$	B _y j	$B_{z}\mathbf{k}$
i•	1	0	0	$A_x \mathbf{i} \bullet$	$A_{x}B_{x}$	0	0
j•	0	1	0	A _y j∙	0	$A_y B_y$	0
k•	0	0	1	$A_{z}\mathbf{k} \bullet$	0	0	$A_z B_z$

5
$$\mathbf{A} \cdot \mathbf{B} = \left(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}\right) \left(B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k}\right) = A_x B_x + A_y B_y + A_z B_z$$

- 6 For unit vectors \mathbf{e}_r and \mathbf{e}_s along axes of a Cartesian frame
 - **a** $\mathbf{e}_r \cdot \mathbf{e}_s = 1$ if r = s
 - **b** $\mathbf{e}_r \cdot \mathbf{e}_s = 0$ if $r \neq s$
- 7 In Matlab, $C = A \cdot B$ is performed as C=A(:)'*B(:) or C=sum(A.*B)
- 8 Uses in geology for dot products: all kinds of projections

7-2

- B Cross product: $\mathbf{A} \times \mathbf{B} = \mathbf{C}$
 - 1 **C** is a <u>vector</u> perpendicular to both **A** and **B**, so **C** is perpendicular to the plane containing **A** and **B**. **C** points in the direction of our thumb if the other fingers on your right hand first point in the direction of **A** and then curl to point in the direction of **B**. (i.e., **A**, **B**, and **C** form a right-handed set). As a result, $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$.

- 2 If unit vectors **a** and **b** parallel vectors **A** and **B**, respectively, and the angle between **a** and **b** (and between **A** and **B**) is θ, then ...
 - **a** $\mathbf{a} \times \mathbf{b} = \sin \theta \mathbf{n}$, where **n** is a unit vector normal to the **a**,**b** plane
 - **b** $\mathbf{A} \times \mathbf{B} = |\mathbf{A}| \mathbf{a} \times |\mathbf{B}| \mathbf{b} = |\mathbf{A}| \mathbf{B} | (\mathbf{a} \times \mathbf{b}) = |\mathbf{A}| \mathbf{B} | (\sin\theta) \mathbf{n}$
 - c Example: If $\mathbf{A} = 2\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$, and $\mathbf{B} = 0\mathbf{i} + 2\mathbf{j} + 0\mathbf{k}$, $\mathbf{A} \cdot \mathbf{B} = (2)(2)\sin(90^{\circ})\mathbf{k} = 4\mathbf{k}$
- 3 The length (magnitude) of **C** is the <u>area</u> of the parallelogram defined by vectors **A** and **B**, where **A** and **B** are along adjacent side of the parallelogram. In the figure below, **AxB** points into the page, and **BxA** points out of the page.

4 Cross product tables of Cartesian basis vectors

	i	j	k		B_{χ}^{i} i	B _y j	$B_z \mathbf{k}$
i×	0	k	-j	$A_x \mathbf{i} \times$	0	$A_x B_y \mathbf{k}$	$-A_{x}B_{z}\mathbf{j}$
j×	k	0	i	$A_y \mathbf{j} \times$	$-A_y B_x \mathbf{k}$	0	$A_y B_z \mathbf{i}$
k ×	j	-i	0	$A_z \mathbf{k} \times$	$A_z B_x \mathbf{j}$	$-A_z B_y \mathbf{i}$	0

5
$$\mathbf{A} \cdot \mathbf{B} = \left(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}\right) \left(B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k}\right)$$
$$= \left(A_y B_z - A_z B_y\right) \mathbf{i} - \left(A_x B_z - A_z B_x\right) \mathbf{j} + \left(A_x B_y - A_y B_x A_y B_z\right)$$

7-3

)k

$$\mathbf{6} \quad \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

7 For unit vectors \mathbf{e}_r and \mathbf{e}_s along axes of a Cartesian frame

- **a** $\mathbf{e}_{p} \times \mathbf{e}_{q} = \mathbf{e}_{r}$ if p,q = 1,2 or 2,3 or 3,1
- **b** $\mathbf{e}_r \times \mathbf{e}_q = -\mathbf{e}_p$ if r, q = 3,2 or 2,1 or 1,3

b
$$\mathbf{e}_p \times \mathbf{e}_q = 0$$
 if $p = q$

- 8 In Matlab, $C = A \times B$ is performed as C = cross(A,B)
- 9 Uses in geology for cross products: finding poles to planes in threepoint problems; finding fold axes from poles to bedding.
- C Scalar triple product: $(\mathbf{A},\mathbf{B},\mathbf{C}) = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = V$
 - 1 The vector triple product is a scalar (i.e., a number) that corresponds to a <u>volume</u>.
 - 2 IVI is the volume of a parallelepiped with edges along A, B, and C. (BxC) gives the area of the base, and the dot product of this with A gives the base times the component of A normal to the base (i.e., the base times the height). The absolute value of V guarantees that the volume is non-negative.

Volume = (base)(height) = IBxCI(A cos

) = IA-(BxC)I

Stephen Martel

University of Hawaii

GG303 Lecture 7

3
$$V = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix} = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix} = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix} = \begin{vmatrix} A_x & A_y & A_z \\ A_y (B_x C_z - B_z C_y) - A_z \\ A_z (B_x C_y - B_y C_x) \end{vmatrix}$$

- 4 The determinant of a 3x3 matrix gives the volume of a parallelepiped.
- 5 In Matlab, $V = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ is performed as $V = \text{sum}(\mathbf{A}.\text{*cross}(\mathbf{B},\mathbf{C}))$
- 6 Use in geology: solutions of equations, estimating volume of ore bodies
- 7 If at least two of the vectors A,B,C are parallel to each other, then A,B,C cannot define a parallelepiped, at least two rows of the matrix in (3) are linearly dependent, and the determinant of (3) is zero, and the three planes defined by A,B,C will not intersect in a unique point
- 8 Proof that $C = A \times B$ is perpendicular to the plane of A and B
 - a If C is <u>not</u> perpendicular to the **AB** plane, then C must be nonperpendicular to both **A** and **C**, i.e., $A \cdot C \neq 0$ and $A \cdot B \neq 0$.
 - **b** $|\mathbf{A} \cdot \mathbf{C}| = |\mathbf{A} \cdot (\mathbf{A} \times \mathbf{B})| = |\mathbf{B} \cdot (\mathbf{A} \times \mathbf{A})| = \mathbf{0}$
 - $\mathbf{C} \quad |\mathbf{B} \cdot \mathbf{C}| = |\mathbf{B} \cdot (\mathbf{A} \times \mathbf{B})| = |\mathbf{A} \cdot (\mathbf{B} \times \mathbf{B})| = \mathbf{0}$
 - d The postulate that C is <u>not</u> perpendicular to the **AB** plane thus is <u>disproved</u>, so C <u>is</u> perpendicular to the **AB** plane.
- D Invariants
 - 1 Quantities that do not depend on the orientation of a coordinate system.
 - 2 Examples
 - a Dot product of two vectors (a length)
 - b Scalar triple product (a volume)