EQUATIONS OF LINES \& PLANES

I Main Topics
A Direction cosines
B Lines
C Planes
II Direction cosines
A The cosines of the angles between a line and the coordinate axes
B The coordinates of the endpoint of a vector of unit length
C The ordered projection lengths of a line of unit length onto the x, y, and z axes

III Lines
A Defined by 2 points
Two-point form: $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
where ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are two known points on the line
B Defined by 1 point (e.g., $x 0, y 0, z 0$) and a direction
Slope-intercept form (2-D): y = mx +b
General form (2-D): $A x+B y+C=0$

$$
\begin{aligned}
& y=m x+b \\
& m x-y+b=0 \\
& (1 / n)(m x-y+b)=0 \\
& A x+B y+C=0
\end{aligned}
$$

Parametric form: $x=x 0+t \alpha, y=y 0+t \beta, z=z 0+t \gamma$,
where $\alpha=\cos \omega_{x}, \beta=\cos \omega_{y}$, and (for 3-D) $\gamma=\cos \omega_{z}$;
α, β, and γ are direction cosines. Note that in 2-D, $\cos \omega_{x}=\sin \omega_{y}$
C Defined by the intersection of two planes

IV Planes

1 Defined by three points

2 Defined by two intersecting lines

3 Defined by two parallel lines
4 Defined by a line and a point not on the line
5 Defined by a distance and direction (or pole) from a point
A General form:
$A x+B y+C z+D=0$
B Normal form:
$\alpha x+\beta y+\gamma z=d$, where
$\alpha=\frac{A}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, \quad \beta=\frac{B}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, \quad \gamma=\frac{C}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}$,
$d=\frac{-D}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}$
The sign of the denominator is opposite to the sign of D, so $\mathbf{d}>\mathbf{0}$. $\alpha=\cos \omega_{\mathrm{x}}, \beta=\cos \omega_{\mathrm{y}}$, and $\gamma=\cos \omega_{\mathrm{z}}$.

C Vector expression of normal form: $\mathbf{n} \cdot \mathbf{V}=\mathbf{d}$, where
\mathbf{V} is a vector from a given point O to the plane,
\mathbf{n} (bold) is the unit normal to the plane given by direction cosines α, β, and $\gamma ; \mathbf{n}$ also goes through point O .
d (unbolded) is the distance from the point to the plane along the normal vector \mathbf{n}, and

- refers to the dot product:

$$
<x_{1}, y_{1}, z_{1}>\cdot<x_{2}, y_{2}, z_{2}>=x_{1} x_{2}+x_{2} y_{2}+z_{1} z_{2}
$$

The equation of "C" can be understood as follows: "The distance from the reference point to a plane (as measured along a direction perpendicular to the plane) is d." If the normal points from the reference point to the plane, then $\mathrm{d}>0$. Otherwise, $\mathrm{d}<0$.

Direction Cosines from Geologic Angle Measurements (Spherical coordinates)

> Positive z-axis up $y=$ north; $x=$ east
xy plane is horizontal plane

RIGHT-HANDED COORDINATES

Remember: Trends are azimuths and are measured in a horizontal plane. Plunges are inclinations and are measured in a vertical plane.

The direction cosines α and β are determined from OA', the length of $O A^{\prime}$ being $\left|\mathrm{OA}^{\prime}\right|=|\mathrm{OA}| \cos \phi=\cos \phi$.
$\alpha=\cos \omega_{X}=(\cos \phi)(\sin \theta)$
$\beta=\cos \omega_{y}=(\cos \phi)(\cos \theta)$
$\gamma=\cos \omega_{Z}=-(\sin \phi)$
$\alpha^{2}+\beta^{2}+\gamma^{2}=1$

$$
\bigwedge z=\text { up } \quad \not \quad y=\text { north }
$$

Orthographic Projection of vector OA onto xy plane

Positive z-axis down

 $x=$ north; $y=$ eastxy plane is horizontal plane
RIGHT-HANDED COORDINATES

Remember: Trends are azimuths and are measured in a horizontal plane. Plunges are inclinations and are measured in a vertical plane.

The direction cosines α and β are determined from OA', the length of $O A^{\prime}$ being $\left|\mathrm{OA}^{\prime}\right|=|O A| \cos \phi=\cos \phi$.
$\alpha=\cos \omega_{\mathrm{X}}=(\cos \phi)(\cos \theta)$
$\beta=\cos \omega_{y}=(\cos \phi)(\sin \theta)$
$\gamma=\cos \omega_{Z}=+(\sin \phi)$
COS
$\alpha^{2}+\beta^{2}+\gamma^{2}=1$

DIRECTION COSINES AND THE EQUATION OF A PLANE

The angle between the x-axis and $O P$ is ω_{x}. The angle between the y-axis and $O P$ is ω_{y}. The angle between the z-axis and $O P$ is ω_{z}.

$\alpha=\cos \omega_{x}=\frac{x}{d}$

$\beta=\cos \omega_{y}=\frac{y}{d}$

$\gamma=\cos \omega_{z}=\frac{z}{d}$
α, β, and γ are the direction cosines of the angles between the normal to the plane and the $\mathrm{x}-\mathrm{y}-$, and z - axes, respectively.

If \mathbf{n} is a unit vector $(|\mathbf{n}|=1)$ normal to the plane through point P, then $\mathbf{n} \cdot \mathbf{V}=\mathbf{d}$

The distance d is positive if the normal points from the reference point to the plane.

The distance d is negative if the normal points from the plane to the reference point.

