## **EQUATIONS OF LINES & PLANES**

- I Main Topics
  - A Direction cosines
  - **B** Lines
  - C Planes
- **II** Direction cosines
  - A The cosines of the angles between a line and the coordinate axes
  - B The coordinates of the endpoint of a vector of unit length
  - C The ordered projection lengths of a line of unit length onto the x,y, and z axes

**III** Lines

A Defined by 2 points Two-point form:  $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ 

where  $(x_1,y_1)$  and  $(x_2,y_2)$  are two known points on the line

B Defined by 1 point (e.g., x0,y0,z0) and a direction

Slope-intercept form (2-D): y = mx + b

General form (2-D): Ax + By + C = 0

$$y = mx + b$$
  

$$mx - y + b = 0$$
  

$$(1/n) (mx - y + b) = 0$$
  

$$Ax + By + C = 0$$
  
Parametric form:  $x = x_0 + t\alpha$ ,  $y = y_0 + t\beta$ ,  $z = z_0 + t\gamma$ ,  
where  $\alpha = \cos \omega_X$ ,  $\beta = \cos \omega_Y$ , and (for 3-D)  $\gamma = \cos \omega_Z$ ;

 $\alpha$ ,  $\beta$ , and  $\gamma$  are direction cosines. Note that in 2-D, cos  $\omega_X = \sin \omega_V$ 

C Defined by the intersection of two planes

## **IV** Planes

- **1** Defined by three points
- 2 Defined by two intersecting lines
- 3 Defined by two parallel lines
- 4 Defined by a line and a point not on the line
- 5 Defined by a distance and direction (or pole) from a point
  - A General form: B Normal form:  $\alpha = \frac{A}{\pm \sqrt{A^2 + B^2 + C^2}}, \qquad \beta = \frac{B}{\pm \sqrt{A^2 + B^2 + C^2}}, \qquad \gamma = \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}},$   $\gamma = \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}}, \qquad \gamma = \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}},$

$$d = \frac{-D}{\pm \sqrt{A^2 + B^2 + C^2}}$$

The sign of the denominator is opposite to the sign of D, so d >0.  $\alpha = \cos \omega_X$ ,  $\beta = \cos \omega_Y$ , and  $\gamma = \cos \omega_Z$ .

- C Vector expression of normal form:  $\mathbf{n} \cdot \mathbf{V} = d$ , where  $\mathbf{V}$  is a vector from a given point O to the plane,
  - **n** (**bold**) is the unit normal to the plane given by direction cosines  $\alpha$ ,  $\beta$ , and  $\gamma$ ; **n** also goes through point O.
  - d (unbolded) is the distance from the point to the plane along the normal vector **n**, and
  - refers to the dot product:

 $<x_1,y_1,z_1> \cdot <x_2,y_2,z_2> = x_1x_2 + x_2y_2 + z_1z_2$ 

The equation of "C" can be understood as follows: "The distance from the reference point to a plane (as measured along a direction perpendicular to the plane) is d." If the normal points from the reference point to the plane, then d>0. Otherwise, d<0.

## Direction Cosines from Geologic Angle Measurements (Spherical coordinates)





The angle between the x-axis and OP is  $\omega_{x}$ . The angle between the y-axis and OP is  $\omega_{y}$ . The angle between the z-axis and OP is  $\omega_{z}$ .



 $\alpha$ ,  $\beta$ , and  $\gamma$  are the direction cosines of the angles between the normal to the plane and the x-, y-, and z- axes, respectively.

If **n** is a unit vector  $(|\mathbf{n}| = 1)$  normal to the plane through point P, then  $\mathbf{n} \cdot \mathbf{V} = \mathbf{d}$ 



The distance d is positive if the normal points from the reference point to the plane.

The distance d is negative if the normal points from the plane to the reference point.

## DIRECTION COSINES AND THE EQUATION OF A PLANE