
28. Folds (II)

I Main Topic: Mechanics of folds above intrusions 
A Background
B G.K. Gilbert’s idealization
C Superposition
D Displacements around an opening-mode crack (sill)
E Dimensional analysis of governing eq. for bending
F Idealized form of folds over a laccolith
G Development of laccoliths and saucer-shaped sills
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http://upload.wikimedia.org/wikipedia/en/a/a6/Laccolith_Montana.jpg
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Half-stereogram of Mount Ellsworth
From Gilbert, 1877, Report on the geology of the Henry Mountains

http://www.nps.gov/history/history/online_books/geology/publications/bul/707/images/fig53.jpg
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G.K. Gilbert David Pollard
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28. Folds (II)
II Mechanics of folds above intrusions (beam theory)

“Ideal Cross-section of a 
Mountain of Eruption”

“Ideal Cross-section of a 
Laccolite, showing the typical 
form and the arching of the 

overlying strata”
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Figures from Gilbert, 1887
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Superposition
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Superposition
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• Opening-mode crack 
modeled by opening-mode 
displacement discontinuities 
(dds) of different apertures

• Openings [X(i)] of dds set so 
that sum of traction changes 
matches boundary condition 
[B(j)] on crack walls = Δσyy

c

• [A(ij)][X(i)] = [B(j)], where A(ij)
is effect of unit opening at 
element i on tractions at 
element j Displacement

Discontinuities
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Superposition
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• Total stress field around 
crack equals sum of stress 
contributions of all dds:   
σt = Σσi

• Total displacement field 
around crack equals sum 
of displacement 
contributions of all dds:   
ut = Σui Displacement

Discontinuities
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)
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uy =
Δσ I

2G
2 1−ν( ) RsinΘ− r sinθ( )− r sinθ r

R
cos θ −Θ( )−1⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

ux =
Δσ I

2G
1− 2ν( ) RcosΘ− r cosθ( )− r sinθ r

R
sin θ −Θ( )⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

“Driving Pressure” (over-pressure)

Shear modulus of host rock

Note:
rsinθ = y
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)
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uy =
Δσ I

2G
2 1−ν( ) RsinΘ− r sinθ( )− r sinθ r

R
cos θ −Θ( )−1⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
→ Δσ I

2G
2 1−ν( ) RsinΘ( ){ }

ux =
Δσ I

2G
1− 2ν( ) RcosΘ− r cosθ( )− r sinθ r

R
sin θ −Θ( )⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
→ Δσ I

2G
1− 2ν( ) RcosΘ− r cosθ( ){ }

Now specialize to the crack walls (y = ±0).
rsinθ = y 0, hence
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)
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R = [(a - x)(a + x)]1/2 = a2 − x2

Θ = θ1
2
= ±π
2
, socosΘ = 0, sinΘ = ±1

r cosθ = x

So the remaining key 
terms are:
R, cosΘ, sinΘ, and rcosθ.
Along the crack, 
these terms are simple:

r1 is distance from right end
r2 is distance from left end
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)
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ucy x ≤ a( ) = Δσ I

2G
2 1−ν( ) RsinΘ( ){ }→ ucy =

Δσ I

2G
2 1−ν( ) ± a2 − x2( ){ }

ucx x ≤ a( ) = Δσ I

2G
1− 2ν( ) RcosΘ− r cosθ( ){ }→ ucx =

Δσ I

2G
1− 2ν( ) −x( ){ }

Along the crack, R=[(a-x)(a+x)]1/2, and rcosθ = x
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)

uy
c = ±Δσ I

2G
2 1−ν( ) a2 − x2( ){ }→ ucy(max) x = 0( ) = +Δσ I

2G
2 1−ν( )a{ }

Now consider the displacements normal to the crack:

uy
c

ucy(max)
=
± a2 − x2( )

a
= ± 1− x

a
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x

y
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)

ucx x ≤ a( ) = Δσ I

2G
1− 2ν( ) −x( ){ }, and  ucy(max) x = 0( ) = +Δσ I

2G
2 1−ν( )a{ }

Now consider the displacements parallel to the crack:

ux
c

ucy(max)
=
1− 2ν( ) −x( )
2 1−ν( )a

For  ν = 0.25,  ux
c

ucy(max)
=
1 2( ) −x( )
2 3 4( )a =

1 2( ) −x( )
3 2( )a = −1

3
x
a

x

y
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Displacements arising from 
opening of a mode-I crack, 
2D elastic model (from 
Pollard and Segall, 1987)
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Along the crack (|x/a| ≤ 1)

Normalized Crack wall displacements 
(v = 0.25)

uy
c

ucy(max)
=
± a2 − x2( )

a
= ± 1− x

a
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

For  ν = 0.25,  ux
c

ucy(max)
=
1 2( ) −x( )
2 3 4( )a =

1 2( ) −x( )
3 2( )a = −1

3
x
a
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Sketch from field notes of Gilbert
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http://pangea.stanford.edu/~annegger/images/colorado%20plateau/laccolith_sketch.jpg
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Dimensional analysis of terms 
in governing equation for 
bending of an elastic layer 
(from Pollard and Fletcher, 
2005)
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d 4v
dx4

= 12p
BH 3

L

H
Mid-plane of
layer

x

y

v

v = vertical deflection of mid-plane {Length}
x = horizontal distance {Length}
L = length of flexed part of layer {Length}
p = overpressure {Force/area}
B = stiffness {Force/area} 
H = thickness of layer {Length}
Dimensions check

Overpressure
(p)
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Dimensional analysis of terms in 
governing equation for bending of 
an elastic layer (from Pollard and 
Fletcher, 2005)

Find constant length scales 
and non-dimensionalize
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x*= x
L
,v*= v

vmax

L

H
Mid-plane of
layer

x

y

v
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Dimensional analysis … (cont.)

Now non-dimensionalize the differential operator

x*= 1
L
x→ dx*

dx
= 1
L

d
dx

= d
dx*

dx*
dx

= d
dx*

1
L

d 2

dx2
= d

dx
⎛
⎝⎜

⎞
⎠⎟

d
dx

⎛
⎝⎜

⎞
⎠⎟ =

d
dx*

1
L

⎛
⎝⎜

⎞
⎠⎟

d
dx*

1
L

⎛
⎝⎜

⎞
⎠⎟ =

1
L

⎛
⎝⎜

⎞
⎠⎟
2 d 2

dx*2
⎛
⎝⎜

⎞
⎠⎟

d 3

dx3
= d

dx
⎛
⎝⎜

⎞
⎠⎟

d 2

dx2
⎛
⎝⎜

⎞
⎠⎟
= d

dx*
1
L

⎛
⎝⎜

⎞
⎠⎟

1
L

⎛
⎝⎜

⎞
⎠⎟
2 d 2

dx*2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= 1

L
⎛
⎝⎜

⎞
⎠⎟
3 d 3

dx*3
⎛
⎝⎜

⎞
⎠⎟

d 4

dx4
= d

dx
⎛
⎝⎜

⎞
⎠⎟

d 3

dx3
⎛
⎝⎜

⎞
⎠⎟
= d

dx*
1
L

⎛
⎝⎜

⎞
⎠⎟

1
L

⎛
⎝⎜

⎞
⎠⎟
3 d 3

dx*3
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= 1

L
⎛
⎝⎜

⎞
⎠⎟
4 d 4

dx*4
⎛
⎝⎜

⎞
⎠⎟
,etc.
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Dimensional analysis of terms in 
governing equation for bending of 
an elastic layer (from Pollard and 
Fletcher, 2005)

Substitute into governing eq.
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v = v*vmax

L

H
Mid-plane of
layer

x

y

v

d 4 v( )
dx4

= 1
L4

d 4

dx*4
v*vmax( ) = 1

L4
vmax( )d 4 v*( )

dx*4
= 12p
BH 3

d 4

dx4
= d 4

dx*4
1
L4

d 4 v( )
dx4

= 12p
BH 3
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Dimensional analysis of terms 
in governing equation for 
bending of an elastic layer 
(from Pollard and Fletcher, 
2005)
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L

H
Mid-plane of
layer

x

y

v

d 4 v( )
dx4

= 1
L4

vmax( )d 4 v*( )
dx*4

= 12p
BH 3

d 4 v( )
dx4

= 12p
BH 3

d 4 v*( )
dx*4

= 12p
B

L4

vmaxH
3

Right side contains only constants
v* ~ L4

v* ~ 1/H3

Long thin layers will deflect much 
more than short thick layersSetting up the problem in dimensionless form gives insight into its solution
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Theoretical form of solution
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L

H
Mid-plane of
layer

x

y

v

d 4v
dx4

= 12p
BH 3 = C4

d 3v
dx3

= C4x +C3

d 2v
dx2

= C4

2
x2 +C3x +C2

dv
dx

= C4

6
x3 + C3

2
x2 +C2x +C1 v = C4

24
x4 + C3

6
x3 + C2

2
x2 +C1x +C0

v(x=0) = C0
The function v is even: v(-x) = v(x)

By symmetry, the odd coefficients (C3 and C1) must equal zero
C2 and C4 are set so that v = 0 at x = ±L/2 and v’ = 0 at x = ±L/2 
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Symmetric Pressurized Crack in 
an Infinite Body

Asymmetric Pressurized Crack 
Parallel to a Surface
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Thin beam

“Thick 
beam”

Bending of layer over laccolith should cause shearing at laccolith perimeter.  
This suggests laccoliths should propagate up towards the surface as they grow.
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The Golden Valley Sill, South Africa – a saucer-shaped sill
From Polteau et al., 2008
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1

2

3

4

Dike

Sill

Laccolith

Laccolith and
saucer-shaped sill

Bending of 
overlying
layers


