- I Main Topic: Mechanics of folds above intrusions
 - A Background
 - B G.K. Gilbert's idealization
 - C Superposition
 - D Displacements around an opening-mode crack (sill)
 - E Dimensional analysis of governing eq. for bending
 - F Idealized form of folds over a laccolith
 - G Development of laccoliths and saucer-shaped sills

28. Folds (II) Laccolith, Montana

http://upload.wikimedia.org/wikipedia/en/a/a6/Laccolith_Montana.jpg

28. Folds (II) II Mechanics of folds above intrusions

Half-stereogram of Mount Ellsworth

From Gilbert, 1877, Report on the geology of the Henry Mountains http://www.nps.gov/history/online_books/geology/publications/bul/707/images/fig53.jpg

28. Folds (II) II Mechanics of folds above intrusions

G.K. Gilbert

David Pollard

II Mechanics of folds above intrusions (beam theory)

"Ideal Cross-section of a Mountain of Eruption"

"Ideal Cross-section of a Laccolite, showing the typical form and the arching of the overlying strata"

Figures from Gilbert, 1887

28. Folds (II) II Mechanics of folds above intrusions

II Mechanics of folds above intrusions Superposition

- Opening-mode crack modeled by opening-mode displacement discontinuities (dds) of different apertures
- Openings $[X_{(i)}]$ of dds set so that sum of traction changes matches boundary condition $[B_{(i)}]$ on crack walls = $\Delta\sigma_{vv}^{c}$
- $[A_{(ij)}][X_{(i)}] = [B_{(j)}]$, where $A_{(ij)}$ is effect of unit opening at element i on tractions at element j

II Mechanics of folds above intrusions Superposition

- Total stress field around crack equals sum of stress contributions of all dds: $\sigma^t = \Sigma \sigma_i$
- Total displacement field around crack equals sum of displacement contributions of all dds: $u^t = \Sigma u_i$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

$$R = (r_1 r_2)^{1/2}$$

$$\Theta = (\theta_1 + \theta_2)/2$$

$$y$$

$$x = -a$$

$$x = +a$$

$$x = +a$$

$$u_{x} = \frac{\Delta \sigma_{I}}{2G} \left\{ (1 - 2v)(R\cos\Theta - r\cos\theta) - r\sin\theta \left[\frac{r}{R}\sin(\theta - \Theta) \right] \right\}$$
"Driving Pressure" (over-pressure)

Note: $rsin\theta = v$

$$u_{y} = \frac{\Delta \sigma_{I}}{2G} \left\{ 2(1-v)(R\sin\Theta - r\sin\theta) - r\sin\theta \left[\frac{r}{R}\cos(\theta - \Theta) - 1 \right] \right\}$$

Shear modulus of host rock

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Now specialize to the crack walls (y = ± 0). rsin $\theta = y \rightarrow 0$, hence

$$u_{x} = \frac{\Delta \sigma_{I}}{2G} \left\{ (1 - 2v)(R\cos\Theta - r\cos\theta) - r\sin\theta \left[\frac{r}{R}\sin(\theta - \Theta) \right] \right\} \rightarrow \frac{\Delta \sigma_{I}}{2G} \left\{ (1 - 2v)(R\cos\Theta - r\cos\theta) \right\}$$

$$u_{y} = \frac{\Delta \sigma_{I}}{2G} \left\{ 2(1-v)(R\sin\Theta - r\sin\theta) - r\sin\theta \left[\frac{r}{R}\cos(\theta - \Theta) - 1 \right] \right\} \rightarrow \frac{\Delta \sigma_{I}}{2G} \left\{ 2(1-v)(R\sin\Theta) \right\}$$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

So the remaining key terms are: R, cosΘ, sinΘ, and rcosθ. Along the crack, these terms are simple:

r₁ is distance from right end
r₂ is distance from left end

$$R = [(a-x)(a+x)]^{1/2} = \sqrt{a^2 - x^2}$$

$$\Theta = \frac{\theta_1}{2} = \frac{\pm \pi}{2}, \operatorname{socos}\Theta = 0, \sin\Theta = \pm 1$$

$$r \cos\theta = x$$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Along the crack, $R=[(a-x)(a+x)]^{1/2}$, and $r\cos\theta = x$

$$u^{c}_{x}(|x| \le a) = \frac{\Delta \sigma_{I}}{2G} \{ (1 - 2v)(R\cos\Theta - r\cos\theta) \} \rightarrow u^{c}_{x} = \frac{\Delta \sigma_{I}}{2G} \{ (1 - 2v)(-x) \}$$

$$u^{c}_{y}(|x| \le a) = \frac{\Delta \sigma_{I}}{2G} \{ 2(1-v)(\underline{R}\sin\Theta) \} \to u^{c}_{y} = \frac{\Delta \sigma_{I}}{2G} \{ 2(1-v)(\underline{\pm\sqrt{a^{2}-x^{2}}}) \}$$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Now consider the displacements normal to the crack:

$$u_{y}^{c} = \frac{\pm \Delta \sigma_{I}}{2G} \left\{ 2(1-v) \left(\sqrt{a^{2}-x^{2}} \right) \right\} \rightarrow u_{y(\max)}^{c} (x=0) = \frac{+\Delta \sigma_{I}}{2G} \left\{ 2(1-v)a \right\}$$

$$\frac{u_y^c}{u_{y(\text{max})}^c} = \frac{\pm \left(\sqrt{a^2 - x^2}\right)}{\underline{a}} = \pm \left(\sqrt{1 - \left(\frac{x}{a}\right)^2}\right)$$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Now consider the displacements parallel to the crack:

$$u_{x}^{c}(|x| \le a) = \frac{\Delta \sigma_{I}}{2G} \{ (1 - 2v)(-x) \}, \text{ and } u_{y(\max)}^{c}(x = 0) = \frac{+\Delta \sigma_{I}}{2G} \{ 2(1 - v)a \}$$

$$\frac{u_{x}^{c}}{u_{y(\max)}^{c}} = \frac{(1 - 2v)(-x)}{2(1 - v)a}$$

For
$$v = 0.25$$
, $\frac{u_x^c}{u_{y(\text{max})}^c} = \frac{(1/2)(-x)}{2(3/4)a} = \frac{(1/2)(-x)}{(3/2)a} = \frac{-1}{3}\frac{x}{a}$

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Along the crack ($|x/a| \le 1$)

$$\frac{u_y^c}{u_{y(\text{max})}^c} = \frac{\pm \left(\sqrt{a^2 - x^2}\right)}{a} = \pm \left(\sqrt{1 - \left(\frac{x}{a}\right)^2}\right)$$

Normalized Crack wall displacements (v = 0.25)

For
$$v = 0.25$$
, $\frac{u_x^c}{u_{v(\text{max})}^c} = \frac{(1/2)(-x)}{2(3/4)a} = \frac{(1/2)(-x)}{(3/2)a} = \frac{-1}{3} \frac{x}{a}$

II Mechanics of folds above intrusions Sketch from field notes of Gilbert

http://pangea.stanford.edu/~annegger/images/colorado%20plateau/laccolith_sketch.jpg

II Mechanics of folds above intrusions

Dimensional analysis of terms in *governing equation* for bending of an elastic layer (from Pollard and Fletcher, 2005)

$$\frac{d^4v}{dx^4} = \frac{12p}{BH^3}$$

v = vertical deflection of mid-plane {Length}

x = horizontal distance {Length}

L = length of flexed part of layer {Length}

p = overpressure {Force/area}

B = stiffness {Force/area}

H = thickness of layer {Length}

Dimensions check

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

Find constant length scales and non-dimensionalize

$$x^* = \frac{x}{L}, v^* = \frac{v}{v_{\text{max}}}$$

II Mechanics of folds above intrusions Dimensional analysis ... (cont.)

Now non-dimensionalize the differential operator

$$x^* = \frac{1}{L}x \to \frac{dx^*}{dx} = \frac{1}{L}$$

$$\frac{d}{dx} = \frac{d}{dx^*} \frac{dx^*}{dx} = \frac{d}{dx^*} \frac{1}{L}$$

$$\frac{d^2}{dx^2} = \left(\frac{d}{dx}\right) \left(\frac{d}{dx}\right) = \left(\frac{d}{dx^*} \frac{1}{L}\right) \left(\frac{d}{dx^*} \frac{1}{L}\right) = \left(\frac{1}{L}\right)^2 \left(\frac{d^2}{dx^{*2}}\right)$$

$$\frac{d^3}{dx^3} = \left(\frac{d}{dx}\right) \left(\frac{d^2}{dx^2}\right) = \left(\frac{d}{dx^*} \frac{1}{L}\right) \left(\left(\frac{1}{L}\right)^2 \left(\frac{d^2}{dx^{*2}}\right)\right) = \left(\frac{1}{L}\right)^3 \left(\frac{d^3}{dx^{*3}}\right)$$

$$\frac{d^4}{dx^4} = \left(\frac{d}{dx}\right) \left(\frac{d^3}{dx^3}\right) = \left(\frac{d}{dx^*} \frac{1}{L}\right) \left(\left(\frac{1}{L}\right)^3 \left(\frac{d^3}{dx^{*3}}\right)\right) = \left(\frac{1}{L}\right)^4 \left(\frac{d^4}{dx^{*4}}\right), etc.$$

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

Substitute into governing eq.

$$\frac{d^4(v)}{dx^4} = \frac{12p}{BH^3}$$

$$v = v * v_{\text{max}}$$
 $\frac{d^4}{dx^4} = \frac{d^4}{dx^{*4}} \frac{1}{L^4}$

$$\frac{d^{4}(v)}{dx^{4}} = \frac{1}{L^{4}} \frac{d^{4}}{dx^{*4}} (v^{*}v_{\text{max}}) = \frac{1}{L^{4}} \frac{(v_{\text{max}})d^{4}(v^{*})}{dx^{*4}} = \frac{12p}{BH^{3}}$$

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

$$\frac{d^{4}(v)}{dx^{4}} = \frac{12p}{BH^{3}}$$

$$\frac{d^{4}(v)}{dx^{4}} = \frac{1}{L^{4}} \frac{(v_{\text{max}})d^{4}(v^{*})}{dx^{*}} = \frac{12p}{BH^{3}}$$

$$\frac{d^{4}(v^{*})}{dx^{*}} = \frac{12p}{B} \frac{L^{4}}{v^{*}}$$

Setting up the problem in dimensionless form gives insight into its solution

Right side contains only constants

$$v^* \sim L^4$$

$$v^* \sim 1/H^3$$

Long thin layers will deflect much more than short thick layers

II Mechanics of folds above intrusions

Theoretical form of solution

$$\frac{d^4v}{dx^4} = \frac{12p}{BH^3} = C_4$$

$$\frac{d^3v}{dx^3} = C_4x + C_3$$

$$\frac{d^2v}{dx^2} = \frac{C_4}{2}x^2 + C_3x + C_2$$

$$\frac{dv}{dx} = \frac{C_4}{6}x^3 + \frac{C_3}{2}x^2 + C_2x + C_1$$

$$v = \frac{C_4}{24}x^4 + \frac{C_3}{6}x^3 + \frac{C_2}{2}x^2 + C_1x + C_0$$

$$v(x=0) = C_0$$

The function v is even: v(-x) = v(x)

By symmetry, the odd coefficients (C_3 and C_1) must equal zero C_2 and C_4 are set so that v = 0 at $x = \pm L/2$ and v' = 0 at $x = \pm L/2$

II Mechanics of folds above intrusions

Symmetric Pressurized Crack in an Infinite Body

Asymmetric Pressurized Crack Parallel to a Surface

Bending of layer over laccolith should cause shearing at laccolith perimeter. This suggests laccoliths should propagate up towards the surface as they grow.

II Mechanics of folds above intrusions

The Golden Valley Sill, South Africa – a saucer-shaped sill From Polteau et al., 2008

II Mechanics of folds above intrusions

