28. Folds (II)

I Main Topic: Mechanics of folds above intrusions
A Background
B G.K. Gilbert's idealization
C Superposition
D Displacements around an opening-mode crack (sill)
E Dimensional analysis of governing eq. for bending
F Idealized form of folds over a laccolith
G Development of laccoliths and saucer-shaped sills

28. Folds (II) Laccolith, Montana

http://upload.wikimedia.org/wikipedia/en/a/a6/Laccolith_Montana.jpg

28. Folds (II)
 II Mechanics of folds above intrusions

Half-stereogram of Mount Ellsworth

From Gilbert, 1877, Report on the geology of the Henry Mountains http://www.nps.gov/history/history/online_books/geology/publications/bul/707/images/fig53.jpg

28. Folds (II)

II Mechanics of folds above intrusions

28. Folds (II)

II Mechanics of folds above intrusions (beam theory)

"Ideal Cross-section of a Mountain of Eruption"
"Ideal Cross-section of a
Laccolite, showing the typical form and the arching of the overlying strata"

Figures from Gilbert, 1887

28. Folds (II)

II Mechanics of folds above intrusions Superposition

28. Folds (II)

II Mechanics of folds above intrusions Superposition

- Opening-mode crack modeled by opening-mode displacement discontinuities (dds) of different apertures
- Openings $\left[\mathrm{X}_{(\mathrm{ij}}\right]$ of dds set so that sum of traction changes matches boundary condition $\left[\mathrm{B}_{(\mathrm{j})}\right]$ on crack walls $=\Delta \sigma_{\mathrm{yy}}{ }^{\mathrm{c}}$
- $\left[\mathrm{A}_{(\mathrm{ij})}\right]\left[\mathrm{X}_{(\mathrm{ij}}\right]=\left[\mathrm{B}_{(\mathrm{j})}\right]$, where $\mathrm{A}_{(\mathrm{ij})}$ is effect of unit opening at element i on tractions at element j

28. Folds (II)

II Mechanics of folds above intrusions Superposition

- Total stress field around crack equals sum of stress contributions of all dds: $\sigma^{\mathrm{t}}=\Sigma \sigma_{\mathrm{i}}$
- Total displacement field around crack equals sum of displacement contributions of all dds: $u^{t}=\Sigma u_{i}$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from $\quad \mathrm{R}=\left(\mathrm{r}_{1} \mathrm{r}_{2}\right)^{1 / 2}$ opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

$$
\begin{aligned}
& u_{x}=\frac{\Delta \sigma_{I}}{2 G}\left\{\begin{array}{c}
\left.(1-2 v)(R \cos \Theta-r \cos \theta)-r \underline{\sin \theta}\left[\frac{r}{R} \sin (\theta-\Theta)\right]\right\} \\
\text { "Driving Pressure" (over-pressure) }
\end{array}\right. \\
& u_{y}=\frac{\Delta \sigma_{I}}{2 G^{\prime}}\left\{2(1-v)\left(R \sin \Theta-r \underline{\sin \theta)}-r \sin \theta\left[\frac{r}{R} \cos (\theta-\Theta)-1\right]\right\}\right.
\end{aligned}
$$

Note:

$$
r \sin \theta=y
$$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from Pollard and Segall, 1987)

Now specialize to the crack walls $(y= \pm 0)$. $r \sin \theta=y \rightarrow 0$, hence

$$
\begin{aligned}
u_{x} & =\frac{\Delta \sigma_{I}}{2 G}\left\{(1-2 v)(R \cos \Theta-r \cos \theta)-r \sin \theta\left[\frac{r}{R} \sin (\theta-\Theta)\right]\right\} \rightarrow \frac{\Delta \sigma_{I}}{2 G}\{(1-2 v)(R \cos \Theta-r \cos \theta)\} \\
u_{y} & =\frac{\Delta \sigma_{I}}{2 G}\left\{2(1-v)(R \sin \Theta-r \sin \theta)-r \sin \theta\left[\frac{r}{R} \cos (\theta-\Theta)-1\right]\right\} \rightarrow \frac{\Delta \sigma_{I}}{2 G}\{2(1-v)(R \sin \Theta)\}
\end{aligned}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from

$$
R=\left(r_{1} r_{2}\right)^{1 / 2}
$$ opening of a mode-I crack,

$$
\Theta=\left(\theta_{1}+\theta_{2}\right) / 2
$$

2D elastic model (from
Pollard and Segall, 1987)

So the remaining key terms are:
$R, \cos \theta, \sin \theta$, and $r \cos \theta$. Along the crack, these terms are simple:

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from $\quad R=\left(r_{1} r_{2}\right)^{1 / 2}$ opening of a mode-I crack,
$\Theta=\left(\theta_{1}+\theta_{2}\right) / 2$
2D elastic model (from
Pollard and Segall, 1987)

Along the crack, $R=[(a-x)(a+x)]^{1 / 2}$, and $r \cos \theta=x$

$$
u_{x}^{c}(|x| \leq a)=\frac{\Delta \sigma_{I}}{2 G}\{(1-2 v)(R \cos \theta-r \cos \theta)\} \rightarrow u_{x}^{c}=\frac{\Delta \sigma_{I}}{2 G}\{(1-2 v) \underline{(-x)}\}
$$

$u_{y}^{c}(|x| \leq a)=\frac{\Delta \sigma_{I}}{2 G}\{2(1-v)(\underline{R} \sin \Theta)\} \rightarrow u_{y}^{c}=\frac{\Delta \sigma_{I}}{2 G}\left\{2(1-v)\left(\pm \underline{\sqrt{a^{2}-x^{2}}}\right)\right\}$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from

Pollard and Segall, 1987)
Now consider the displacements normal to the crack:

$$
\begin{aligned}
& u_{y}^{c}=\left.\frac{ \pm \Delta \sigma_{I}}{\frac{2 G}{}\left\{2(1-v)\left(\sqrt{a^{2}-x^{2}}\right)\right.}\right\} \rightarrow u_{y \text { (max }}^{c}(x=0)=\frac{+\Delta \sigma_{I}}{\frac{2 G}{}\{2(1-v) a\}} \\
& \frac{u_{y}^{c}}{u_{y \text { (max) }}^{c}}=\frac{ \pm\left(\sqrt{a^{2}-x^{2}}\right)}{a}= \pm\left(\sqrt{1-\left(\frac{x}{a}\right)^{2}}\right)
\end{aligned}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack, 2D elastic model (from
 Pollard and Segall, 1987)
Now consider the displacements parallel to the crack:

$$
\begin{gathered}
u_{x}^{c}(|x| \leq a)= \\
\frac{\Delta \sigma_{I}}{2 G}\{(1-2 v)(-x)\}, \text { and } u_{y(\max)}^{c}(x=0)=\frac{+\Delta \sigma_{I}}{2 G}\{2(1-v) a\} \\
\frac{u_{x}{ }^{c}}{u^{c}{ }_{y(\max)}}
\end{gathered}=\frac{(1-2 v)(-x)}{\frac{2(1-v) a}{}}+\begin{aligned}
& \text { For } v=0.25, \frac{u_{x}{ }^{c}}{u^{c}{ }_{y(\max)}}=\frac{(1 / 2)(-x)}{2(3 / 4) a}=\frac{(1 / 2)(-x)}{(3 / 2) a}=\frac{-1}{3} \frac{x}{a}
\end{aligned}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Displacements arising from opening of a mode-I crack,

Normalized Crack wall displacements
($v=0.25$) 2D elastic model (from Pollard and Segall, 1987)

Along the $\operatorname{crack}(|x / a| \leq 1)$
$\frac{u_{y}^{c}}{u_{y \text { (max }}^{c}}=\frac{ \pm\left(\sqrt{a^{2}-x^{2}}\right)}{a}= \pm\left(\sqrt{1-\left(\frac{x}{a}\right)^{2}}\right)$

For $v=0.25, \frac{u_{x}^{c}}{u^{c}}{ }_{y(\max)}=\frac{(1 / 2)(-x)}{2(3 / 4) a}=\frac{(1 / 2)(-x)}{(3 / 2) a}=\frac{-1}{3} \frac{x}{a}$

28. Folds (II)

II Mechanics of folds above intrusions Sketch from field notes of Gilbert

http://pangea.stanford.edu/~annegger/images/colorado\ plateau/laccolith_sketch.jpg

28. Folds (II)

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

$$
\frac{d^{4} v}{d x^{4}}=\frac{12 p}{B H^{3}}
$$

$\mathrm{v}=$ vertical deflection of mid-plane $\{$ Length $\}$
$x=$ horizontal distance \{Length $\}$
$L=$ length of flexed part of layer \{Length\}
$p=$ overpressure \{Force/area\}
B = stiffness \{Force/area\}
$\mathrm{H}=$ thickness of layer \{Length\}
Dimensions check

28. Folds (II)

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

Find constant length scales and non-dimensionalize

$$
x^{*}=\frac{x}{L}, v^{*}=\frac{v}{v_{\max }}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Dimensional analysis ... (cont.)

Now non-dimensionalize the differential operator

$$
\begin{aligned}
& x^{*}=\frac{1}{L} x \rightarrow \frac{d x^{*}}{d x}=\frac{1}{L} \\
& \frac{d}{d x}=\frac{d}{d x^{*}} \frac{d x^{*}}{d x}=\frac{d}{d x^{*}} \frac{1}{L} \\
& \frac{d^{2}}{d x^{2}}=\left(\frac{d}{d x}\right)\left(\frac{d}{d x}\right)=\left(\frac{d}{d x^{*}} \frac{1}{L}\right)\left(\frac{d}{d x *} \frac{1}{L}\right)=\left(\frac{1}{L}\right)^{2}\left(\frac{d^{2}}{d x^{*}}\right) \\
& \frac{d^{3}}{d x^{3}}=\left(\frac{d}{d x}\right)\left(\frac{d^{2}}{d x^{2}}\right)=\left(\frac{d}{d x^{*}} \frac{1}{L}\right)\left(\left(\frac{1}{L}\right)^{2}\left(\frac{d^{2}}{d x^{*}}\right)\right)=\left(\frac{1}{L}\right)^{3}\left(\frac{d^{3}}{d x^{*}}\right) \\
& \frac{d^{4}}{d x^{4}}=\left(\frac{d}{d x}\right)\left(\frac{d^{3}}{d x^{3}}\right)=\left(\frac{d}{d x^{*}} \frac{1}{L}\right)\left(\left(\frac{1}{L}\right)^{3}\left(\frac{d^{3}}{d x^{*}}\right)\right)=\left(\frac{1}{L}\right)^{4}\left(\frac{d^{4}}{d x^{4}}\right), \text { etc. }
\end{aligned}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

Substitute into governing eq.

$$
\frac{d^{4}(v)}{d x^{4}}=\frac{12 p}{B H^{3}}
$$

$$
\begin{gathered}
\frac{v=v^{*} v_{\max }}{} \quad \frac{d^{4}}{d x^{4}}=\frac{d^{4}}{d x^{*}} \frac{1}{L^{4}} \\
\frac{d^{4}(v)}{d x^{4}}=\frac{1}{L^{4}} \frac{d^{4}}{d x^{* 4}}\left(v^{*} v_{\max }\right)=\frac{1}{L^{4}} \frac{\left(v_{\max }\right) d^{4}\left(v^{*}\right)}{d x^{* 4}}=\frac{12 p}{B H^{3}}
\end{gathered}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Dimensional analysis of terms in governing equation for bending of an elastic layer (from Pollard and Fletcher, 2005)

$$
\begin{gathered}
\frac{d^{4}(v)}{d x^{4}}=\frac{12 p}{B H^{3}} \\
\frac{d^{4}(v)}{d x^{4}}=\frac{1}{L^{4}} \frac{\left(v_{\max }\right) \frac{d^{4}\left(v^{*}\right)}{d *^{4}}}{}=\frac{12 p}{B H^{3}} \\
\frac{d^{4}\left(v^{*}\right)}{d *^{*}}
\end{gathered}=\frac{12 p}{B} \frac{L^{4}}{v_{\max } H^{3}} \leftarrow \$
$$

$$
\begin{aligned}
& \text { Right side contains only constants } \\
& \mathrm{v}^{*} \sim L^{4} \\
& \mathrm{v}^{*} \sim 1 / H^{3} \\
& \text { Long thin layers will deflect much } \\
& \text { more than short thick layers } \\
& \hline
\end{aligned}
$$

28. Folds (II)

II Mechanics of folds above intrusions

Theoretical form of solution

$$
\begin{gathered}
\frac{d^{4} v}{d x^{4}}=\frac{12 p}{B H^{3}}=\underline{C_{4}} \\
\frac{d^{3} v}{d x^{3}}=C_{4} x+C_{3} \\
\frac{d^{2} v}{d x^{2}}=\frac{C_{4}}{2} x^{2}+C_{3} x+C_{2} \\
\frac{d v}{d x}=\frac{C_{4}}{6} x^{3}+\frac{C_{3}}{2} x^{2}+C_{2} x+C_{1}
\end{gathered}
$$

$$
\longrightarrow v=\frac{C_{4}}{24} x^{4}+\frac{C_{3}}{6} x^{3}+\frac{C_{2}}{2} x^{2}+C_{1} x+C_{0}
$$

$$
v(x=0)=c_{0}
$$

The function v is even: $v(-x)=v(x)$
By symmetry, the odd coefficients (C_{3} and C_{1}) must equal zero C_{2} and C_{4} are set so that $\mathrm{v}=0$ at $\mathrm{x}= \pm \mathrm{L} / 2$ and $\mathrm{v}^{\prime}=0$ at $\mathrm{x}= \pm \mathrm{L} / 2$

28. Folds (II)
 II Mechanics of folds above intrusions

Symmetric Pressurized Crack in an Infinite Body

Asymmetric Pressurized Crack Parallel to a Surface

Bending of layer over laccolith should cause shearing at laccolith perimeter. This suggests laccoliths should propagate up towards the surface as they grow.

28. Folds (II)

II Mechanics of folds above intrusions

The Golden Valley Sill, South Africa - a saucer-shaped sill From Polteau et al., 2008

28. Folds (II)

II Mechanics of folds above intrusions

2

