- I Main Topics
 - A What is a fold?
 - B Curvature of a plane curve
 - C Curvature of a surface

http://upload.wikimedia.org/wikipedia/commons/a/ae/Caledonian_orogeny_fold_in_King_Oscar_Fjord.jpg

Anticline, New Jersey

http://en.wikipedia.org/wiki/File:NJ_Route_23_anticline.jpg

Syncline, Rainbow Basin, California

http://en.wikipedia.org/wiki/File:Rainbow_Basin.JPG

Folds, New South Wales, Australia

http://en.wikipedia.org/wiki/File:Folded_Rock.jpg

Folds in granite, Sierra Nevada, California

Energy Resources and an Anticline

http://www.wou.edu/las/physci/Energy/graphics/OilAnticline.jpg

10/10/18

Three-dimensional Fold, Salt Dome, Zagros Mountains

http://upload.wikimedia.org/wikipedia/commons/2/2c/ZagrosMtns_SaltDome_ISS012-E-18774.jpg

10/10/18 GG303 6

Complex Folds

Cartoon showing formation of salt domes from initially uniform thickness salt layer due to loading

Initial constant thickness salt layer

Ridges continue to grow as salt withdraws from the intervening lows – salt domes start to form at nodes

Salt moves into network of ridges

Salt domes continue to grow at the expense of previously formed ridges – salt now completely withdrawn from lows

http://upload.wikimedia.org/wikipedia/en/2/2d/SaltTectonics1.jpg

II What is a fold?

- A Definition: a surface (in a rock body) that has undergone a change in its curvature (at least locally)
- B All kinds of rocks can be folded, even granites
- C Consider a folded piece of paper...

Folded dike in granite near fault Sierra Nevada, California

III Curvature of a plane curve

D Tangents

Consider a curve r(t), where r is a vector function that gives points on the curve, and t is any parameter

1 Tangent vector: $\mathbf{r'} = \frac{d\mathbf{r}}{dt}$

Tangents

Fig. 27.1a

- 2 Unit tangent vector: $T = \frac{\mathbf{r'}}{|\mathbf{r'}|}$
- 3 Tangent gives the slope

D Tangents (cont.)

5 Example 1: parabola

$$y = x^2 \rightarrow \vec{r}(x) = x\vec{i} + x^2\vec{j}$$

$$\mathbf{r'}(x) = \frac{d\vec{r}}{dx} = \frac{d(x\vec{i} + x^2\vec{j})}{dx} = \vec{i} + 2x\vec{j}$$

$$\vec{T}(x) = \frac{\mathbf{r'}}{|\mathbf{r'}|} = \frac{1\vec{i} + 2x\vec{j}}{\sqrt{1^2 + (2x)^2}} = \frac{1\vec{i} + 2x\vec{j}}{\sqrt{1 + 4x^2}}$$

$$At x = 1, \vec{T} = \frac{\vec{i} + 2\vec{j}}{\sqrt{5}}$$

Positions and Unit Tangents Along a Parabolic Curve (Fig. 27.2a)

Position vectors in black Unit tangent vectors in red

D Tangents (cont.)

4 Example 2: unit circle

$$\vec{r}(\theta) = \cos\theta \vec{i} + \sin\theta \vec{j}$$

Positions and Unit Tangents Along a Circular Curve (Fig. 27.2b) 0.5 2 0

$$\mathbf{r}' = \frac{d\vec{r}}{d\theta} = \frac{d\left(\cos\theta\,\vec{\mathbf{i}} + \sin\theta\,\vec{\mathbf{j}}\right)}{d\theta} = -\sin\theta\,\vec{\mathbf{i}} + \cos\theta\,\vec{\mathbf{j}}$$

Position vectors in black Unit tangent vectors in red

$$\vec{T} = \frac{\mathbf{r'}}{|\mathbf{r'}|} = \frac{-\sin\theta\vec{i} + \cos\theta\vec{j}}{\sqrt{(-\sin\theta)^2 + (\cos\theta)^2}} = -\sin\theta\vec{i} + \cos\theta\vec{j}$$
 Note that $\mathbf{T} \cdot \mathbf{r} = 0$ here

III Curvature of a plane curve

A Tangents (cont.)

6 If origin is on curve and reference axis is tangent to curve, then local slope = 0

III Curvature of a plane curve

- B Curvature = deviation from a straight line
 - 1 Curvature is the first derivative (i.e., rate of change) of the unit tangent (i.e., slope) with respect to distance (s) along the curve
 - 2 Curvature vector is normal to tangent vector

$$\lim_{s\to 0} \Delta \phi = \tan(\Delta \phi) = \left|\Delta \vec{T}\right| / \left|\vec{T}_1\right| = \left|\Delta \vec{T}\right| / 1 = \left|\Delta \vec{T}\right|$$

III Curvature of a plane curve

B Curvature (cont.)
$$3 \quad K(s) = |\mathbf{T}'(s)| = \left| \frac{d\mathbf{T}}{ds} \right|$$

4
$$\mathbf{T}(s) = \frac{d\mathbf{r}}{ds} / \left| \frac{d\mathbf{r}}{ds} \right|$$

In a local tangential reference frame, $d\mathbf{r}$ is in the direction of ds, $|d\mathbf{r}| = ds$, and |dr/ds|=1

5
$$K(s) = |\mathbf{T}'(s)| = \left|\frac{d\mathbf{T}}{ds}\right| = \left|\frac{d\left(\frac{d\mathbf{r}}{ds}\right)}{ds}\right| = \left|\frac{d^2\mathbf{r}}{ds^2}\right| = |\mathbf{r}''(s)|$$

10/10/18

- B Curvature of a plane curve(cont.)
 - 6 Curvature vector (K)

a
$$\vec{\mathbf{K}}(t) = d\vec{\mathbf{T}}/|d\vec{\mathbf{r}}|$$

$$\mathbf{b} \quad \vec{\mathbf{K}}(t) = \frac{d\vec{\mathbf{T}}}{dt} / \left| \frac{d\vec{\mathbf{r}}}{dt} \right|$$

7 Curvature magnitude

$$K(t) = |\mathbf{K}| = \left| \frac{d\mathbf{T}}{dt} \middle/ \left| \frac{d\mathbf{r}}{dt} \right| \right|$$

B Curvature of a plane curve (cont.)

8 Example: circle of radius p

$$\vec{\mathbf{K}}(\theta) = \frac{d\vec{\mathbf{T}}}{d\theta} / \left| \frac{d\vec{\mathbf{r}}}{d\theta} \right|$$

$$\frac{d\vec{\mathbf{r}}}{d\theta} = \frac{d(\rho\cos\theta\vec{\mathbf{i}} + \rho\sin\theta\vec{\mathbf{j}})}{d\theta} = -\rho\sin\theta\vec{\mathbf{i}} + \rho\cos\theta\vec{\mathbf{j}}$$

$$\vec{T} = \frac{\mathbf{r'}}{|\mathbf{r'}|} = \frac{-\rho \sin \theta \,\mathbf{i} + \rho \cos \theta \,\mathbf{j}}{\sqrt{(-\rho \sin \theta)^2 + (\rho \cos \theta)^2}} = -\sin \theta \,\mathbf{i} + \cos \theta \,\mathbf{j}$$

$$\vec{\mathbf{K}}(\boldsymbol{\theta}) = \left(-\cos\theta \,\vec{\mathbf{i}} - \sin\theta \,\vec{\mathbf{j}}\right) / \rho = \frac{\left(-\vec{\mathbf{r}}/\rho\right)}{\rho} = \frac{-\vec{\mathbf{r}}}{\rho^2} \qquad \left|\vec{\mathbf{K}}\right| = \left|\frac{-\vec{\mathbf{r}}}{\rho^2}\right| = \frac{-\vec{\mathbf{r}}}{\rho^2}$$

$$\vec{r}(\theta) = \rho \cos \theta \vec{i} + \rho \sin \theta \vec{j}$$

$$\left| \vec{\mathbf{K}} \right| = \left| \frac{-\vec{\mathbf{r}}}{\rho^2} \right| = \frac{1}{\rho}$$

B Curvature of a plane curve (cont.)

9 One can assign a sign to the curvature

a Positive = concave
 (curve opens up)

IV Curvature of a surface

A Consider a local x,y,z
"tangential"
reference frame,
where the x and y
axes are tangent to
the surface and z is
perpendicular to a
folded surface that
was originally planar

IV Curvature of a surface

B The first partial derivatives $\partial z/\partial x$ and $\partial z/\partial y$ are the slopes of the curves formed by intersecting the surface with xz-plane (black curve) and the yz-plane (white curve), respectively. At the local origin, these derivatives equal zero.

IV Curvature of a surface

C The second partial derivatives $\partial^2 z/\partial x^2$, $\partial^2 z/\partial x \partial y$, $\partial^2 z/\partial y \partial x$, and $\partial^2 z/\partial y^2$ can be arranged in a <u>symmetric</u> matrix (a <u>Hessian</u> matrix).

$$H = \begin{bmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial y \partial x} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix} If[X] = \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y \partial x} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix} \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y \partial x} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix} \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix}$$

IV Curvature of a surface

- D The principal values of the <u>symmetric Hessian</u> matrix are the greatest and least normal curvatures
- E The principal directions **X** of the symmetric Hessian matrix are the directions of the principal curvatures; these directions are perpendicular

$$H = \begin{bmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial y \partial x} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix} \rightarrow \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$$

Analogous to principal stresses

$$[H][X] = k[X]$$

X gives directions in which slope increases or decreases most rapidly

Curvature-based Three-dimensional Fold Classification Scheme

10/10/18