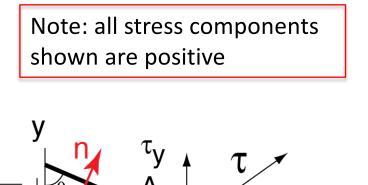
- I Main Topics
 - A Cauchy's formula
 - B Principal stresses (eigenvectors and eigenvalues)
 - C Example

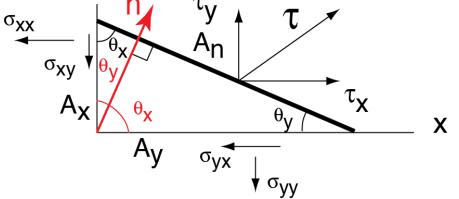
hKp://hvo.wr.usgs.gov/kilauea/update/images.html

II Cauchy's formula

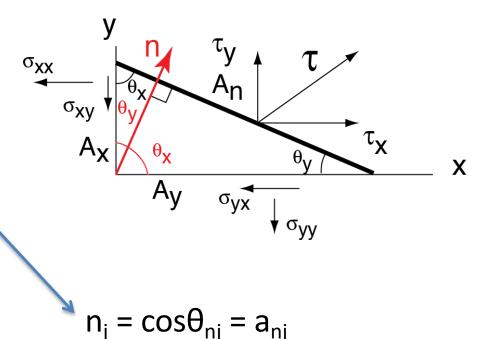
- A Relates traction (stress *vector*) components to stress *tensor* components in the same reference frame
- B 2D and 3D treatments analogous

$$C \tau_i = \sigma_{ij} n_j = n_j \sigma_{ij} = n_j \sigma_{ji}$$





- II Cauchy's formula (cont.)
 - $C \tau_i = n_j \sigma_{ji}$
 - 1 Meaning of terms
 - a τ_i = traction component
 - b n_j = direction cosine
 of angle between ndirection and jdirection
 - c σ_{ji} = stress component
 - d τ_i and σ_{ji} act *in* the same direction

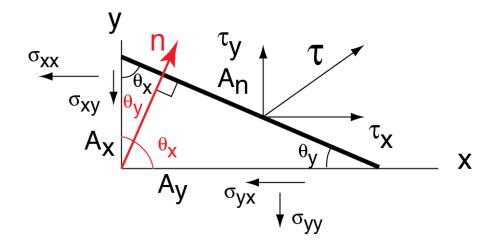


II Cauchy's formula (cont.)

D Expansion (2D) of $\tau_i = n_j \sigma_{ji}$

1
$$\tau_x = n_x \sigma_{xx} + n_y \sigma_{yx}$$

2
$$\tau_y = n_x \sigma_{xy} + n_y \sigma_{yy}$$



$$n_j = \cos \theta_{nj} = a_{nj}$$

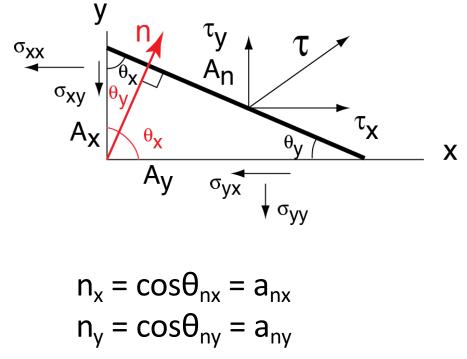
II Cauchy's formula (cont.)

E Derivation: Contributions to τ_x

Note that all contributions must act in x-direction

1
$$\tau_x = w^{(1)}\sigma_{xx} + w^{(2)}\sigma_{yx}$$

2 $\frac{F_x}{A_n} = \left(\frac{A_x}{A_n}\right)\frac{F_x^{(1)}}{A_x} + \left(\frac{A_y}{A_n}\right)\frac{F_x^{(2)}}{A_y}$
3 $\tau_x = n_x\sigma_{xx} + n_y\sigma_{yx}$



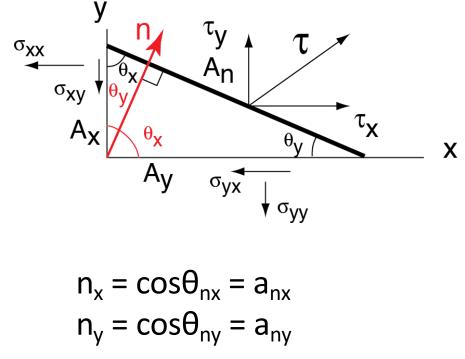
II Cauchy's formula (cont.)

E Derivation: Contributions to τ_y

Note that all contributions must act in y-direction

1
$$\tau_y = w^{(3)}\sigma_{xy} + w^{(4)}\sigma_{yy}$$

2 $\frac{F_y}{A_n} = \left(\frac{A_x}{A_n}\right)\frac{F_y^{(3)}}{A_x} + \left(\frac{A_y}{A_n}\right)\frac{F_y^{(4)}}{A_y}$
3 $\tau_y = n_x\sigma_{xy} + n_y\sigma_{yy}$



- II Cauchy's formula (cont.)
 - F Alternative forms

1
$$\tau_i = n_j \sigma_{ji}$$

$$z = \tau_i = \sigma_{ji}$$

$$5 l_i = O_{ij} n_j$$

$$4 \begin{bmatrix} \tau_{x} \\ \tau_{y} \\ \tau_{z} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{xy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} n_{x} \\ n_{y} \\ n_{z} \end{bmatrix} \sigma_{xx} + \sigma_{xy} + \sigma_{xy}$$

Matlab

$$t = s^*n$$

6 Note that the stress matrix (tensor) transforms the normal vector to the plane $n_i = \cos \theta_{nj} = a_{nj}$ (**n**) to the traction vector acting on the plane (τ)

$$n = \cos \theta = a$$

 σ_{VX}

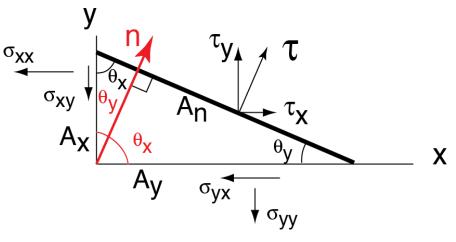
σ

X

III Principal stresses (eigenvectors and eigenvalues)

- A Now we seek (a) the orientation of the unit normal (given by n_x and n_y) to any special plane where the associated traction vector is perpendicular (normal) to that plane, and (b) the magnitude (λ) of that traction vector.
- B These traction vectors have no shear component and hence correspond to the principal stresses.
- C The orientations of the special traction vectors are called eigenvectors, and the magnitudes of these special traction vectors are called eigenvalues.
- D An eigenvector points in the same direction as the normal to the plane, so the transformation of the normal vector to the traction vector by Cauchy's formula does not involve a rotation.

Note that the traction vector below parallels the normal vector to the plane



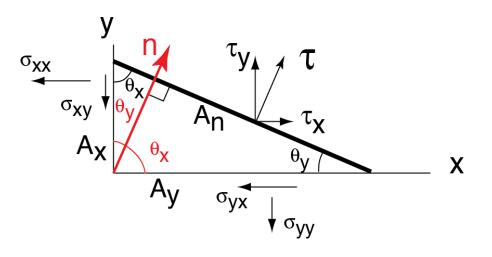
$$n_j = \cos \theta_{nj} = a_{nj}$$

III Principal stresses (eigenvectors and eigenvalues)

E The x- and y- components of such a principal traction vector are obtained by projecting the vector onto the x- and y- axes:

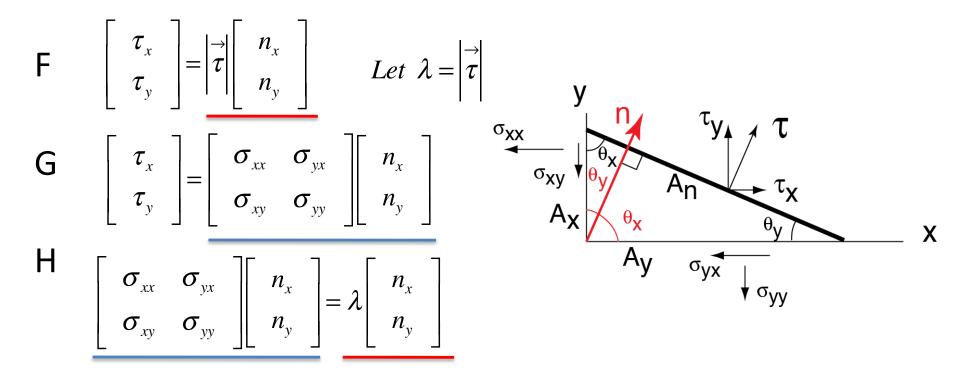
$$\begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix} = \begin{vmatrix} \overrightarrow{\tau} \\ -\overrightarrow{\tau} \end{vmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix}$$

Since the magnitude of the eigenvector is a scalar, both the normal to the plane and the eigenvector point in the same direction.



 $n_j = cos \theta_{nj} = a_{nj}$

III Principal stresses (eigenvectors and eigenvalues)



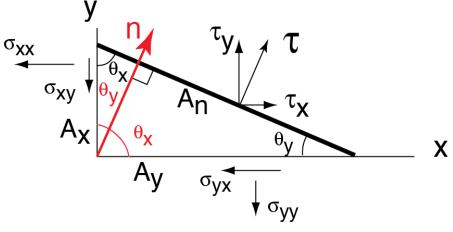
The form of (H) is [A][X]= λ [X], and [σ] is symmetric

III Principal stresses (eigenvectors and eigenvalues)

From previous notes

Subtract the right side from both sides

$$\begin{bmatrix} \sigma_{xx} - T & \sigma_{yx} - 0 \\ \sigma_{xy} - 0 & \sigma_{yy} - T \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



or

I

J
$$[\sigma - IT][n] = [0]$$
, where $[I] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Now, a brief interlude to show how to solve analytically for the eigenvalues in 2D

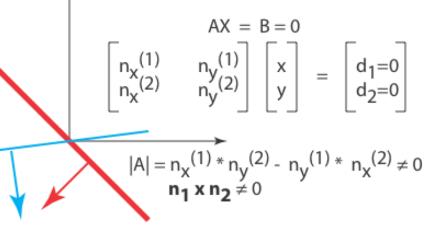
9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

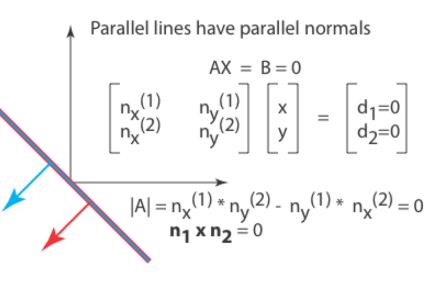
From previous notes

III Determinant (cont.)

- D Geometric meanings of the real matrix equation AX = B = 0
 - 1 |A| ≠0;
 - a [A]⁻¹ exists
 - b Describes two lines (or 3 planes) that intersect at the origin
 - c X has a unique solution
 - 2 |A| = 0;
 - a [A]⁻¹ does not exist
 - b Describes two co-linear lines that that pass through the origin (or three planes that intersect a line or plane through the origin)
 - c X has no unique solution

Intersecting lines have non-parallel normals





9. EIGENVECTORS, EIGENVALUES, AND From previous notes FINITE STRAIN

III Eigenvalue problems, eigenvectors and eigenvalues (cont.)

E Alternative form of an eigenvalue equation

→ 1 [A][X]=λ[X]

Subtracting $\lambda[IX] = \lambda[X]$ from both sides yields:

- \longrightarrow 2 [A-I λ][X]=0 (same form as [\mathcal{A}][X]=0)
 - F Solution conditions and connections with determinants 1 Unique trivial solution of [X] = 0 if and only if $|A-I\lambda| \neq 0$
- → 2 Eigenvector solutions ([X] \neq 0) if and only if |A-I λ |=0

16

cannot be

negative.

real.

Eigenvalues are

Eigenvalue problems, eigenvectors and eigenvalues (cont.)
G Characteristic equation:
$$|A-l\lambda|=0$$

1 Eigenvalues of a symmetric 2x2 matrix $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$
a $\lambda_1, \lambda_2 = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-b^2)}}{2}$
b $\lambda_1, \lambda_2 = \frac{(a+d) \pm \sqrt{(a+2ad+d)^2 - 4ad+4b^2}}{2}$
c $\lambda_1, \lambda_2 = \frac{(a+d) \pm \sqrt{(a-2ad+d)^2 + 4b^2}}{2}$
d $\lambda_1, \lambda_2 = \frac{(a+d) \pm \sqrt{(a-2ad+d)^2 + 4b^2}}{2}$
Radical term cannot be negative.
Eigenvalues a real.

ic not F

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN From previous notes

VI Solutions for symmetric matrices (cont.)

 \rightarrow B Any distinct eigenvectors (X₁, X₂) of a <u>symmetric</u> nxn matrix are perpendicular (X₁ • X₂ = 0)

1a
$$AX_1 = \lambda_1 X_1$$
 1b $AX_2 = \lambda_2 X_2$

AX₁ parallels X₁, AX₂ parallels X₂ (property of eigenvectors)

Dotting AX_1 by X_2 and AX_2 by X_1 can test whether X_1 and X_2 are orthogonal.

2a
$$\mathbf{X}_2 \bullet A \mathbf{X}_1 = \mathbf{X}_2 \bullet \lambda_1 \mathbf{X}_1 = \lambda_1 (\mathbf{X}_2 \bullet \mathbf{X}_1)$$

2b
$$\mathbf{X}_1 \bullet A \mathbf{X}_2 = \mathbf{X}_1 \bullet \lambda_2 \mathbf{X}_2 = \lambda_2 (\mathbf{X}_1 \bullet \mathbf{X}_2)$$

9. EIGENVECTORS, EIGENVALUES, AND From previous notes FINITE STRAIN

If A=A^T, then the left sides of (2a) and (2b) are equal:

3
$$\mathbf{X}_2 \bullet A \mathbf{X}_1 = A \mathbf{X}_1 \bullet \mathbf{X}_2 = [A \mathbf{X}_1]^{\mathsf{T}} [\mathbf{X}_2] = [[\mathbf{X}_1]^{\mathsf{T}} [\mathbf{A}]^{\mathsf{T}}][\mathbf{X}_2]$$

 $= [\mathbf{X}_1]^{\mathsf{T}}[\mathbf{A}] [\mathbf{X}_2] = [\mathbf{X}_1]^{\mathsf{T}}[[\mathbf{A}] [\mathbf{X}_2]] = \mathbf{X}_1 \bullet \mathbf{A} \mathbf{X}_2$

Since the left sides of (2a) and (2b) are equal, the right sides must be equal too. Hence,

4 $\lambda_1 (\mathbf{X}_2 \bullet \mathbf{X}_1) = \lambda_2 (\mathbf{X}_1 \bullet \mathbf{X}_2)$

Now subtract the right side of (4) from the left

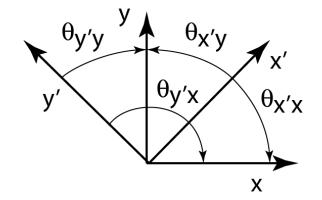
- 5 $(\lambda_1 \lambda_2)(X_2 \bullet X_1) = 0$
 - The eigenvalues generally are different, so $\lambda_1 \lambda_2 \neq 0$.
 - This means for (5) to hold that $\mathbf{X}_2 \bullet \mathbf{X}_1 = 0$.
 - Therefore, the eigenvectors (**X**₁, **X**₂) of a symmetric 2x2 matrix are perpendicular

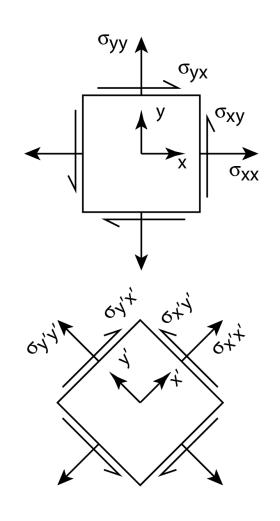
End of brief interlude

IV Example Find the principal stresses

given
$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4MPa & \sigma_{xy} = -4MPa \\ \sigma_{yx} = -4MPa & \sigma_{yy} = -4MPa \end{bmatrix}$$

$$\theta_{x'x} = -45^\circ, \theta_{x'y} = 45^\circ, \theta_{y'x} = -135^\circ, \theta_{y'y} = -45^\circ$$



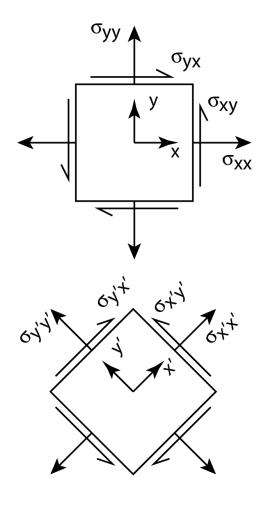


IV Example

$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4MPa & \sigma_{xy} = -4MPa \\ \sigma_{yx} = -4MPa & \sigma_{yy} = -4MPa \end{bmatrix}$$

First find eigenvalues

$$\lambda_{1},\lambda_{2} = \frac{\left(\sigma_{xx} + \sigma_{yy}\right) \pm \sqrt{\left(\sigma_{xx} - \sigma_{yy}\right)^{2} + 4\sigma_{xy}^{2}}}{2}$$
$$\lambda_{1},\lambda_{2} = -4MPa \pm \frac{\sqrt{64}}{2}MPa = 0MPa, -8MPa$$



19. Principal Stresses Example

$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4MPa & \sigma_{xy} = -4MPa \\ \sigma_{yx} = -4MPa & \sigma_{yy} = -4MPa \end{bmatrix}$$

$$\lambda_1, \lambda_2 = -4MPa \pm \frac{\sqrt{64}}{2}MPa = 0MPa, -8MPa$$

Then solve for eigenvectors (the dimensions of stress are unnecessary below and are dropped)

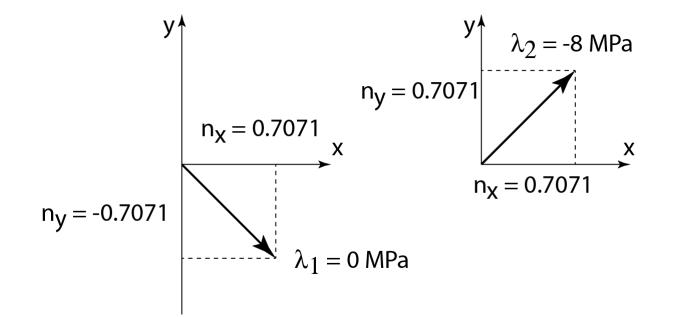
For
$$\lambda_1 = 0: \begin{bmatrix} -4-0 & -4 \\ -4 & -4-0 \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -4n_x - 4n_y = 0 \Rightarrow n_x = -n_y \\ -4n_x - 4n_y = 0 \Rightarrow n_x = -n_y \end{bmatrix}$$

For $\lambda_2 = -8: \begin{bmatrix} -4-(-8) & -4 \\ -4 & -4-(-8) \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 4n_x - 4n_y = 0 \Rightarrow n_x = n_y \\ -4n_x + 4n_y = 0 \Rightarrow n_x = n_y \end{bmatrix}$

IV

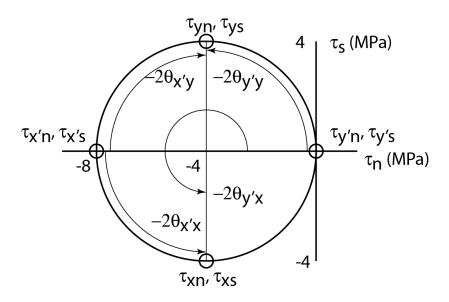
IV Example

$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4MPa & \sigma_{xy} = -4MPa \\ \sigma_{yx} = -4MPa & \sigma_{yy} = -4MPa \end{bmatrix} \begin{bmatrix} \text{Eigenvalues} & \text{Eigenvectors} \\ \lambda_1 = 0MPA & n_x = -n_y \\ \lambda_2 = -8MPA & n_x = n_y \end{bmatrix}$$



IV Example (values in MPa)

$\sigma_{xx} = -4$	$\tau_{xn} = -4$	$\sigma_{x'x'} = -8$	$\tau_{x'n} = -8$	n ^σ yy λ s c σ _{yx}
σ _{xy} = - 4	$\tau_{xs} = -4$	$\sigma_{x'y'} = 0$	$\tau_{x's} = 0$	
σ _{yx} = - 4	$\tau_{ys} = +4$	$\sigma_{y'x'} = -0$	$\tau_{y's} = +0$	$ \begin{array}{c c} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
σ _{γγ} = - 4	$\tau_{yn} = -4$	$\sigma_{y'y'} = 0$	$\tau_{y'n} = 0$	



644

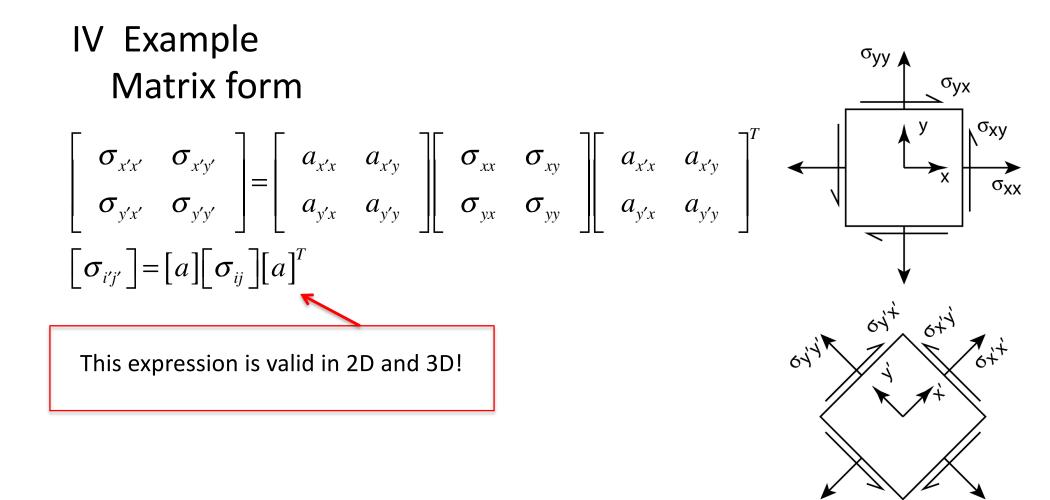
644

n ĸ

S

6t'i

6++



IV Example Matrix form/Matlab

