17. Mohr Circle for Tractions

I Main Topics
A Stresses vs. tractions
B Mohr circle for tractions
C Example

17. Mohr Circle for Tractions

- From King et al., 1994
(Fig. 11)
- Coulomb stress change caused by the Landers rupture. The left-lateral ML=6.5 Big Bear rupture occurred along dotted line 3 hr 26 min after the Landers main shock. The Coulomb stress increase at the future Big Bear epicenter is 2.2-2.9 bars.

17. Mohr Circle for Tractions

II Stresses vs. tractions
A Similarities between stresses and tractions

1 Same dimensions (force per unit area)
2 The normal stress acting on a plane matches the normal traction

Positive tractions on perpenciluar planes

Positive stresses at a point

Note the use of double subscripts here on the tractions; This unconventional

17. Mohr Circle for Tractions

II Stresses vs. tractions (cont.)
B Differences between stresses and tractions
1 Stresses are tensor quantities and tractions are vectors.
2 The stress state is defined at a point using a fixed reference frame, whereas a traction is defined on a plane with a reference frame that floats with the plane.
3 Shear stress components on perpendicular planes have the same sign, whereas shear tractions on perpendicular planes have opposite signs.

Positive stresses at a point

Positive tractions on perpendicular planes

Note that the first subscript (n) on the tractions has been replaced by " x " and " y " here

17. Mohr Circle for Tractions

III Mohr circle for tractions
A $\tau_{n}=\sigma_{1} \cos ^{2} \theta+\sigma_{2} \sin ^{2} \theta$
B $\tau_{s}=\left(\sigma_{2}-\sigma_{1}\right) \sin \theta \cos \theta$
Now $\cos ^{2} \theta=(1 / 2)(1+\cos 2 \theta)$

$$
\begin{aligned}
& \sin ^{2} \theta=(1 / 2)(1-\cos 2 \theta) \\
& \sin \theta \cos \theta=(1 / 2)(\sin 2 \theta)
\end{aligned}
$$

C $\tau_{n}=\frac{\sigma_{1}+\sigma_{2}}{2}+\frac{\sigma_{1}-\sigma_{2}}{2} \cos 2 \theta$
D $\quad \tau_{s}=\frac{-\left(\sigma_{1}-\sigma_{2}\right)}{2} \sin 2 \theta$

17. Mohr Circle for Tractions

III Mohr circle for tractions

C $\tau_{n}=\frac{\sigma_{1}+\sigma_{2}}{2}+\frac{\sigma_{1}-\sigma_{2}}{2} \cos 2 \theta$
D $\tau_{s}=\frac{-\left(\sigma_{1}-\sigma_{2}\right)}{2} \sin 2 \theta$
Now $c=\frac{\sigma_{1}+\sigma_{2}}{2} \quad r=\frac{\sigma_{1}-\sigma_{2}}{2}$

$$
\begin{aligned}
& \tau_{\mathrm{n}}=\left(\left(\sigma_{1}+\sigma_{2}\right) / 2\right)+\left(\left(\sigma_{1}-\sigma_{2}\right) / 2\right) \cos (-2 \theta) \\
& \tau_{\mathrm{s}}=\left(\left(\sigma_{1}-\sigma_{2}\right) / 2\right) \sin (-2 \theta)
\end{aligned}
$$

E $\tau_{n}=c+r \cos (-2 \theta)$

F $\tau_{s}=r \sin (-2 \theta)$

Equations of a Mohr circle for tractions

Relate tractions on planes of different orientation c is mean normal stress (traction)
r is maximum shear traction (the circle radius)
σ_{1} is the most tensile stress
σ_{2} is the least tensile stress

17. Mohr Circle for Tractions

FORCE BALANCE DIAGRAM
("Physical space")

G Key points

CORRESPONDING MOHR CIRCLE
("Mohr circle space")

Fig. 17.1
$1 \theta=\theta_{1 n}$ is the angle between the normal to the plane σ_{1} acts on and the normal to the plane of interest
2 If positive θ is counterclockwise in "physical space", -2θ is clockwise in "Mohr circle space"

17. Mohr Circle for Tractions

Stresses		Tractions	
$\sigma_{x x}$ +10 MPa τ_{xn} σ_{xy} +3 MPa τ_{xs} $\sigma_{y x}$ +3 MPa $\sigma_{y y}$ +2 MPa τ_{ys} -3 MPa	τ_{yn}	+2 MPa	

Note that the magnitude of the normal stresses and normal tractions are equal. So $\tau_{1}=\sigma_{1}$ below.
Example 1 using Mohr circle to find principal stresses

- Suppose $\sigma_{x x}=+10 \mathrm{MPa}$ (tension), $\sigma_{x y}=+3 \mathrm{MPa}$ (left lateral shear), $\sigma_{y y}=+2 \mathrm{MPa}$ (tension), and $\sigma_{y x}=+3 \mathrm{MPa}$ (right lateral shear).
A) Draw a box in a reference frame and clearly label the stresses on its sides; this is a critically important step.
B) Determine the stresses and tractions on the faces of the box. Here, we use the tensor "on-in" convention.

17. Mohr Circle for Tractions

C Plot and label the points on a set of labelled τ_{n}, τ_{s} axes.
D Draw the Mohr circle through the points by finding the center (c) and radius (r) of the circle.
E Label the principal magnitudes τ_{1} and $\tau_{2}\left(\tau_{1}>\tau_{2}\right)$; they come from the intersection of the circle with the normal stress (τ_{n}) axis.
F Assign reference axes to the principal directions; I chose x^{\prime} for the τ_{1}-direction.
G Label the negative double angle between the traction pair that act on a plane with a known normal direction (here, x or y) and the traction pair that act on a plane with an unknown direction (e.g., x^{\prime}).
H Draw and label a new reference frame and box showing the principal stresses, making sure to use the double angle relationship correctly.

