16. STRESS AT A POINT

I Main Topics
A Stress vector (traction) on a plane
B Stress at a point
C Principal stresses
D Transformation of principal stresses to tractions in 2D

16. STRESS AT A POINT

http://hvo.wr.usgs.gov/kilauea/update/images.html

16. STRESS AT A POINT

I Stress vector (traction) on a plane A $\vec{\tau}=\lim _{A \rightarrow 0} \vec{F} / A$
B Traction vectors can be added as vectors
C A traction vector can be resolved into normal $\left(\tau_{n}\right)$ and shear (τ_{s}) components
1 A normal traction (τ_{n}) acts perpendicular to a plane
2 A shear traction (τ_{s}) acts parallel to a plane
D Local reference frame
1 The n-axis is normal to the plane
2 The s-axis is parallel to the plane

16. STRESS AT A POINT

III Stress at a point (cont.)
A Stresses refer to balanced internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
B "On -in convention": The stress component $\sigma_{i j}$ acts on the plane normal to the i-direction and acts in the j-direction
1 Normal stresses: i=j
2 Shear stresses: $i \neq j$

Normal stresses

Shear stresses

16. STRESS AT A POINT

III Stress at a point
C Dimensions of stress: force/unit area
D Convention for stresses
1 Tension is positive
2 Compression is negative
3 Follows from on-in convention
4 Consistent with most mechanics books
5 Counter to most geology books

Normal stresses

Shear stresses

16. STRESS AT A POINT

III Stress at a point
C $\sigma_{i j}=\left[\begin{array}{cc}\sigma_{x x} & \sigma_{x y} \\ \sigma_{y x} & \sigma_{y y}\end{array}\right] \begin{gathered}\text { 2-D } \\ 4 \text { components }\end{gathered}$
D $\sigma_{i j}=\left[\begin{array}{ccc}\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\ \sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\ \sigma_{z x} & \sigma_{z y} & \sigma_{z z}\end{array}\right] 9$ components
E In nature, the state of stress can (and usually does) vary from point to point
F For rotational equilibrium, $\sigma_{x y}=\sigma_{y x}, \sigma_{x z}=\sigma_{z x}, \sigma_{y z}=\sigma_{z y}$

Shear stresses

16. STRESS AT A POINT

IV Principal Stresses (these have magnitudes and orientations)
A Principal stresses act on planes which feel no shear stress
B The principal stresses are normal stresses.
C Principal stresses act on perpendicular planes
D The maximum, intermediate, and minimum principal stresses are usually designated σ_{1}, σ_{2}, and σ_{3}, respectively.
E Principal stresses have a single subscript.

Normal stresses
Shear stresses

Principal stresses

16. STRESS AT A POINT

IV Principal Stresses (cont.)
F Principal stresses represent the stress state most simply

Normal stresses
$G \quad \sigma_{i j}=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right] \quad \begin{gathered}2-\mathrm{D} \\ 2 \text { components }\end{gathered}$
$\mathrm{H} \quad \sigma_{i j}=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3}\end{array}\right] \quad$ 3 components

Principal stresses

16. STRESS AT A POINT

V Transformation of principal stresses to tractions in 2D
A Description of terms
1 Three planes A, A_{1}, and A_{2} form the sides of a triangular prism; these have normals in the n -, 1 -, and -2-directions, respectively.
2 Plane A_{1} is acted on by known normal stress σ_{1}.
3 Plane A_{2} is acted on by known normal stress σ_{2}.
4 The n-direction is at angle θ_{1} $(=\theta)$ with respect to the 1direction, and at angle θ_{2} with respect to the 2-direction.
5 The s-direction is at a counterclockwise 90° angle relative to the n -direction (like y and x).

16. STRESS AT A POINT

V Transformation of principal stresses to tractions in 2D
B Approach
Find weighting factors that determine contributions of known stresses to desired tractions and sum contributions
$1 \tau_{\mathrm{n}}=\mathrm{w}_{\mathrm{n} 1} \sigma_{1}+\mathrm{w}_{\mathrm{n} 2} \sigma_{2}$
$2 \tau_{\mathrm{s}}=\mathrm{w}_{\mathrm{s} 1} \sigma_{1}+\mathrm{w}_{\mathrm{s} 2} \sigma_{2}$

16. STRESS AT A POINT

C Contribution of σ_{1} (on face A_{1} of area A_{1}) to τ_{n} (on face A of area A)
Start with the definition of traction:

$$
\left.1 \quad \tau_{n}{ }^{(1)}=F_{n}{ }^{(1)}\right) / A
$$

Find unknowns $F_{n}{ }^{(1)}$ and A from knowns σ_{1} and θ.
First find the force F_{1} associated with σ_{1}

$$
2 \quad \mathrm{~F}_{1}=\sigma_{1} \mathrm{~A}_{1} \quad \text { Force }=(\text { stress }) \text { (area) }
$$

Find $F_{n}{ }^{(1)}$, the component of F_{1} in the n-direction

$$
3 \quad F_{n}{ }^{(1)}=F_{1} \cos \theta_{1}
$$

Find A in terms of A_{1}
$A_{1}=A \cos \theta_{1}$ (see diagram at right)
$4 \mathrm{~A}=\mathrm{A}_{1} / \cos \theta_{1}$
Contribution of σ_{1} to τ_{n} :

5a $\quad \tau_{n}{ }^{(1)}=F_{n}{ }^{(1)} / A=F_{1} \cos \theta_{1} /\left(A_{1} / \cos \theta_{1}\right)$
$5 b \tau_{n}{ }^{(1)}=\left(F_{1} / A_{1}\right) \cos \theta_{1} \cos \theta_{1}=\sigma_{1} \cos \theta_{1} \cos \theta_{1}$
Weighting factor $\mathrm{w}_{\mathrm{n} 1}$
$6 \quad w_{n 1}=\cos \theta_{1} \cos \theta_{1}=\cos \theta \cos \theta$

16. STRESS AT A POINT

D Contribution of σ_{2} (on face A_{2} of area A_{2}) to τ_{n} (on face A of area A)
Start with the definition of traction:

$$
\left.1 \quad \tau_{n}{ }^{(2)}=F_{n}{ }^{(2)}\right) / A
$$

Find unknowns $F_{n}{ }^{(2)}$ and A from knowns σ_{2} and θ.
First find the force F_{2} associated with σ_{2}

$$
2 \quad \mathrm{~F}_{2}=\sigma_{2} \mathrm{~A}_{2} \quad \text { Force }=(\text { stress })(\text { area })
$$

Find $F_{n}{ }^{(2)}$, the component of F_{2} in the n-direction
$3 \quad F_{n}{ }^{(2)}=F_{2} \cos \theta_{2}$
Find A in terms of A_{2}
$A_{2}=A \cos \theta_{2}$ (see diagram at right)
$4 \mathrm{~A}=\mathrm{A}_{2} / \cos \theta_{2}$
Contribution of σ_{2} to τ_{n} :
5a $\quad \tau_{n}{ }^{(2)}=F_{n}{ }^{(2)} / A=F_{2} \cos \theta_{2} /\left(A_{2} / \cos \theta_{2}\right)$
$5 b \quad \tau_{n}{ }^{(2)}=\left(F_{2} / A_{2}\right) \cos \theta_{2} \cos \theta_{2}=\sigma_{2} \cos \theta_{2} \cos \theta_{2}$
Weighting factor $\mathrm{W}_{\mathrm{n} 2}$
$6 \quad \mathrm{w}_{\mathrm{n} 2}=\cos \theta_{2} \cos \theta_{2}=\sin \theta \sin \theta$

Fig. 16.2

1-direction
$\theta_{1}+\theta_{2}=90^{\circ}$
$\cos \theta_{1}=\cos \theta$
$\cos \theta_{2}=\sin \theta$

16. STRESS AT A POINT

E Contribution of σ_{1} (on face A_{1} of area A_{1}) to τ_{s} (on face A of area A)
Start with the definition of traction:

$$
\left.1 \quad \tau_{s}{ }^{(1)}=F_{s}{ }^{(1)}\right) / A
$$

Find unknowns $F_{s}{ }^{(1)}$ and A from knowns σ_{1} and θ.
First find the force F_{1} associated with σ_{1}

$$
2 \quad \mathrm{~F}_{1}=\sigma_{1} \mathrm{~A}_{1} \quad \text { Force }=(\text { stress })(\text { area })
$$

Find $F_{s}{ }^{(1)}$, the component of F_{1} in the s-direction
$3 \quad F_{s}{ }^{(1)}=-F_{1} \cos \theta_{2}$
Find A in terms of A_{2}
$A_{1}=A \cos \theta_{1}$ (see diagram at right)
$4 \mathrm{~A}=\mathrm{A}_{1} / \cos \theta_{1}$
Fig. 16.3

Contribution of σ_{1} to τ_{n} of σ_{1} :
5a $\quad \tau_{s}{ }^{(1)}=F_{s}{ }^{(1)} / A=-F_{1} \cos \theta_{2} /\left(A_{1} / \cos \theta_{1}\right)$
$5 b \quad \tau_{s}{ }^{(1)}=-\left(F_{1} / A_{1}\right) \cos \theta_{2} \cos \theta_{1}=-\sigma_{1} \cos \theta_{2} \cos \theta_{1}$
Weighting factor $\mathrm{W}_{\mathrm{s} 1}$
$6 \mathrm{w}_{\mathrm{s} 1}=-\cos \theta_{2} \cos \theta_{1}=-\sin \theta \cos \theta$

$W_{s 1}=\cos \theta_{2} \cos \theta_{1}=-\sin \theta \cos \theta$

16. STRESS AT A POINT

F Contribution of $\sigma_{2}\left(\right.$ on face A_{1} of area $\left.A_{1}\right)$ to τ_{5} (on face A of area A)
Start with the definition of traction:

$$
\left.1 \quad \tau_{s}{ }^{(2)}=F_{s}^{(2)}\right) / \mathrm{A}
$$

Find unknowns $F_{5}{ }^{2)}$ and A from knowns σ_{2} and θ.
First find the force F_{2} associated with σ_{2}

$$
2 \quad F_{2}=\sigma_{2} A_{2} \quad \text { Force }=(\text { stress })(\text { area })
$$

Find $F_{s}{ }^{(2)}$, the component of F_{2} in the s-direction

$$
3 \quad F_{s}^{(2)}=F_{2} \cos \theta_{1}
$$

Find A in terms of A_{1}
$A_{1}=A \cos \theta_{1}$ (see diagram at right)
$4 \mathrm{~A}=\mathrm{A}_{2} / \cos \theta_{2}$

Fig. 16.4

Contribution of σ_{1} to τ_{n} of σ_{1} :
5a $\tau_{s}^{(2)}=F_{s}^{(2)} / A=F_{2} \cos \theta_{1} /\left(A_{2} / \cos \theta_{2}\right)$
$5 b \tau_{5}^{(2)}=\left(F_{2} / A_{2}\right) \cos \theta_{1} \cos \theta_{2}=\sigma_{2} \cos \theta_{1} \cos \theta_{2}$
Weighting factor $\mathrm{W}_{\mathrm{s} 2}$
$6 \mathrm{w}_{\mathrm{s} 2}=\cos \theta_{1} \cos \theta_{2}=\cos \theta \sin \theta$

16. STRESS AT A POINT

\checkmark Transformation of principal stresses to tractions in 2D
G Original equations

$$
\begin{aligned}
& 1 \tau_{\mathrm{n}}=\mathrm{w}_{\mathrm{n} 1} \sigma_{1}+\mathrm{w}_{\mathrm{n} 1} \sigma_{2} \\
& 2 \tau_{\mathrm{s}}=\mathrm{w}_{\mathrm{s} 1} \sigma_{1}+\mathrm{w}_{\mathrm{s} 1} \sigma_{2}
\end{aligned}
$$

H Original equations
$1 \tau_{\mathrm{n}}=\cos \theta \cos \theta \sigma_{1}$
$+\sin \theta \sin \theta \sigma_{2}$
$2 \tau_{s}=-\sin \theta \cos \theta \sigma_{1}$
$+\sin \theta \cos \theta \sigma_{2}$

