15. FINITE STRAIN & INFINITESIMAL STRAIN (AT A POINT) I Main Topics A The finite strain tensor E B Infinitesimal strain and its tensor ϵ C Deformation paths for finite strain 10/19/16 GG303 ### 15. FINITE STRAIN & INFINITESIMAL STRAIN II The finite strain tensor *E* A Used to find the changes in the squares of distances (ds)² between points in a deformed body based on differences in their initial positions Sides of lower boxes maintain their length, but the diagonals change length 10/19/16 GG303 2 II The finite strain tensor E B Derivation of [E] 1 $$(ds)^2 = (dx)^2 + (dy)^2$$ $2 (ds)^2 = \begin{bmatrix} dx & dy \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$ $$\mathbf{4} \left[\begin{array}{cc} dx & dy \end{array} \right] = \left[dX \right]^T$$ Consider vector dX and its length $$3 \begin{bmatrix} dx \\ dy \end{bmatrix} = [dX] \qquad (dx)^2 + (dy)^2 = (ds)^2 = dX \cdot dX$$ 10/19/16 GG303 ### 15. FINITE STRAIN & INFINITESIMAL STRAIN II The finite strain tensor *E* B Derivation of [E] 1 $$(ds)^2 = (dx)^2 + (dy)^2$$ $$2 (ds)^2 = \begin{bmatrix} dx & dy \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$$ $$3 \quad \left[\begin{array}{c} dx \\ dy \end{array} \right] = \left[dX \right]$$ $$4 \left[\begin{array}{cc} dx & dy \end{array} \right] = \left[dX \right]^T$$ 5 $$(ds)^2 = [dX]^T [dX] = [dX]^T [I][dX],$$ where $$[I] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ Now consider vector dX' 6 $$[dX'] = [F][dX]$$ From lecture 14: 7 $$(ds')^2 = \begin{bmatrix} dx' & dy' \end{bmatrix} \begin{bmatrix} dx' \\ dy' \end{bmatrix}$$ = $[dX']^T [dX']$ 8 $$(ds')^2 = \lceil [F][dX] \rceil^T \lceil [F][dX] \rceil$$ 10/19/16 GG303 ### B Derivation of [E] (cont.) 8 $$(ds')^2 = [[F][dX]]^T [[F][dX]]$$ Now find the difference between the two different dot products, noting that $[[F][dX]]^T = [dX]^T[F]^T$ 9 $$(ds')^2 - (ds)^2 = [dX]^T [F]^T [F][dX] - [dX]^T [I]^T [dX]$$ **10** $$(ds')^2 - (ds)^2 = [dX]^T \lceil [F]^T [F] - [I] \rceil [dX]$$ 11 $$\frac{\left\{ (ds')^2 - (ds)^2 \right\}}{2} = \frac{\left[dX \right]^T \left[\left[F \right]^T \left[F \right] - \left[I \right] \right] \left[dX \right]}{2}$$ 12 $$\left| \frac{1}{2} \left\{ (ds')^2 - (ds)^2 \right\} = [dX]^T [E][dX] \right| [E] \equiv \frac{1}{2} [[F]^T [F] - [I]]$$ $$[E] \equiv \frac{1}{2} [[F]^T [F] - [I]]$$ 10/19/16 GG303 ### 15. FINITE STRAIN & INFINITESIMAL STRAIN ### C Meaning of [E] 1 $$\frac{1}{2} \left\{ (ds')^2 - (ds)^2 \right\} = [dX]^T [E][dX]$$ Given E and dX (the difference in initial positions) of points), then one can find (half) the difference in the squares of the lengths of lines connecting the points before and after deformation **2** $$[E] = \frac{1}{2} [[F]^T [F] - [I]]$$ 3 $$[E] = \frac{1}{2} [[J_u + I]^T [J_u + I] - [I]]$$ [E] gives half the change of squares of line segment lengths, but what do the terms of [E] mean? 10/19/16 D Expansion of [E] $$[E] \equiv \frac{1}{2} [[J_u + I]^T [J_u + I] - [I]]$$ $$\mathbf{1} \quad J_{u} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$ $$\mathbf{2} \ [E] = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}^{T} \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ 10/19/16 GG303 #### 15. FINITE STRAIN & INFINITESIMAL STRAIN D Expansion of [E] $[E] = \frac{1}{2} [[J_u + I]^T [J_u + I] - [I]]$ $$\mathbf{3} \qquad [E] = \frac{1}{2} \left[\begin{bmatrix} \frac{\partial u}{\partial x} + 1 & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} + 1 \end{bmatrix}^{T} \begin{bmatrix} \frac{\partial u}{\partial x} + 1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} + 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right]$$ $$4 \quad [E] = \frac{1}{2} \begin{bmatrix} \left(\frac{\partial u}{\partial x} + 1\right) \left(\frac{\partial u}{\partial x} + 1\right) + \left(\frac{\partial v}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) - 1 & \left(\frac{\partial u}{\partial x} + 1\right) \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) \left(\frac{\partial v}{\partial y} + 1\right) \\ \left(\frac{\partial u}{\partial y}\right) \left(\frac{\partial u}{\partial x} + 1\right) + \left(\frac{\partial v}{\partial y} + 1\right) \left(\frac{\partial v}{\partial x}\right) & \left(\frac{\partial u}{\partial y}\right) \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial y} + 1\right) \left(\frac{\partial v}{\partial y} + 1\right) - 1 \end{bmatrix}$$ The meanings of the terms in [E] still are not intuitive 10/19/16 GG303 ### 15. FINITE STRAIN & INFINITESIMAL STRAIN III Infinitesimal strain ### A Derivation of infinitesimal strain tensor [ϵ] $$\mathbf{1} \quad [E] = \frac{1}{2} \begin{bmatrix} \left(\frac{\partial u}{\partial x} + 1\right) \left(\frac{\partial u}{\partial x} + 1\right) + \left(\frac{\partial v}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) - 1 & \left(\frac{\partial u}{\partial x} + 1\right) \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) \left(\frac{\partial v}{\partial y} + 1\right) \\ \left(\frac{\partial u}{\partial y}\right) \left(\frac{\partial u}{\partial x} + 1\right) + \left(\frac{\partial v}{\partial y} + 1\right) \left(\frac{\partial v}{\partial x}\right) & \left(\frac{\partial u}{\partial y}\right) \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial y} + 1\right) \left(\frac{\partial v}{\partial y} + 1\right) - 1 \end{bmatrix}$$ If the displacement derivatives are <<1, their products with each other can be neglected $$\mathbf{2} \qquad [\varepsilon] = \frac{1}{2} \begin{bmatrix} \left(\frac{\partial u}{\partial x}\right) + \left(\frac{\partial u}{\partial x}\right) & \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) \\ \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) & \left(\frac{\partial v}{\partial y}\right) + \left(\frac{\partial v}{\partial y}\right) \end{bmatrix} = \frac{1}{2} \left[\left[J_u\right] + \left[J_u\right]^T \right]$$ 10/19/16 GG303 # 15. FINITE STRAIN & INFINITESIMAL **STRAIN** IV Infinitesimal strain $$\mathbf{1} \quad u_2 = u_1 + du = u_1 + \left(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy\right) + \dots$$ 2 $$v_2 = v_1 + dv = v_1 + \left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy\right) + \dots$$ $$\mathbf{3} \quad \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} + \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} + \dots \Rightarrow \begin{bmatrix} U_2 \end{bmatrix} = \begin{bmatrix} U_1 \end{bmatrix} + \begin{bmatrix} dU \end{bmatrix} \approx \begin{bmatrix} U_1 \end{bmatrix} + \begin{bmatrix} J_u \end{bmatrix} [dX]$$ 10/19/16 B Taylor series expansion (cont.) Now split [J_{II}] into two matrices: the infinitesimal strain matrix [ϵ] and the anti-symmetric rotation matrix [ω] $$\begin{bmatrix} J_{u} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} \quad \begin{bmatrix} J_{u} \end{bmatrix}^{T} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{bmatrix} \frac{\partial v}{\partial x}$$ $$[\varepsilon] = \frac{[J_u] + [J_u]^T}{2} = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \end{bmatrix} \quad [\omega] = \frac{[J_u] - [J_u]^T}{2} = \frac{1}{2} \begin{bmatrix} 0 & \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} & 0 \end{bmatrix}$$ Symmetric $$[\varepsilon] + [\omega] = [I]$$ Anti-symmetric 10/19/16 11 ## 15. FINITE STRAIN & INFINITESIMAL **STRAIN** B Taylor series expansion (cont.) $$[\varepsilon] = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix}; \varepsilon_{xy} = \varepsilon_{yx} \quad \text{Symmetric}$$ $$[\omega] = \frac{1}{2} \begin{bmatrix} 0 & \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \omega_{xy} \\ \omega_{yx} & 0 \end{bmatrix}; \omega_{xy} = -\omega_{yx} \quad \text{Anti-symmetric}$$ $$[\boldsymbol{\omega}] = \frac{1}{2} \begin{vmatrix} 0 & \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} & 0 \end{vmatrix} = \begin{bmatrix} 0 & \omega_{xy} \\ \omega_{yx} & 0 \end{bmatrix}; \, \boldsymbol{\omega}_{xy} = -\boldsymbol{\omega}_{yx} \quad \text{Anti-symmetric}$$ 10/19/16 GG303 IV Infinitesimal strain C Taylor series expansion $$[U_2] \approx [U_1] + [J_u][dX] = [U_1] + [[\varepsilon] + [\omega]][dX]$$ Infinitesimal deformation can be decomposed into: a translation (given by [U₁]), a strain (given by [ε]), and a rotation (given by $[\omega]$) 10/19/16 GG303 13 # 15. FINITE STRAIN & INFINITESIMAL **STRAIN** $$\varepsilon_{xx} = \frac{\partial u}{\partial x}$$ $\varepsilon_{yy} = \frac{\partial v}{\partial y}$ $$\varepsilon_{yy} = \frac{\partial v}{\partial v}$$ $$\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} (\Psi_1 - \Psi_2) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$ $$\omega_{xy} = -\omega_{xy} = \frac{1}{2} (\Psi_1 + \Psi_2) = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dy$$ For small angles, $\Psi = \tan \Psi$ Positive angles are measured about the z-axis using a right hand rule. In (c) the angle Ψ_2 is clockwise (negative), but du is positive. In (d) Ψ_2 is counter-clockwise, and du< 0. 10/19/16 GG303 III Deformation paths for finite strain Consider two different deformations A Deformation 1 $$\begin{bmatrix} F_1 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$ B Deformation 2 $$\begin{bmatrix} F_2 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$ 10/19/16 17 #### 15. FINITE STRAIN & INFINITESIMAL STRAIN GG303 III Deformation paths for finite strain Consider two different deformations A Deformation 1 $$\begin{bmatrix} F_1 \end{bmatrix} = \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix}$$ B Deformation 2 $$\begin{bmatrix} F_2 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$ C F2 acts on F1 $$[F_2][F_1] = \begin{bmatrix} a_2a_1 + b_2c_1 & a_2b_1 + b_2d_1 \\ c_2a_1 + d_2c_1 & c_2b_1 + d_2d_1 \end{bmatrix}$$ D F1 acts on F2 $$[F_1][F_2] = \begin{bmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_1 + d_1d_2 \end{bmatrix}$$ E The sequence of finite deformations matters – unless off-diagonal terms are small 10/19/16 GG303 18 Now consider [F2] acting after [F1] (i.e., [F2] acts on [F1]) $$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = [F_2][F_1]$$ [F2] [F1] Now consider [F1] acting after [F2]] (i.e., [F1] acts on [F2]) $$\begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = [F_1][F_2]$$ [F1] [F2] $$[F_2][F_1] \neq [F_1][F_2]$$ 10/19/16 GG303 20 IV Infinitesimal strain and the infinitesimal strain tensor [ε] A Infinitesimal strain Deformation where the displacement derivatives in [J_u] are small relative to one so that the products of the derivatives are very small and can be ignored. B An approximation to finite strain $$[\varepsilon] = \frac{1}{2} \begin{bmatrix} \left(\frac{\partial u}{\partial x}\right) + \left(\frac{\partial u}{\partial x}\right) & \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) \\ \left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right) & \left(\frac{\partial v}{\partial y}\right) + \left(\frac{\partial v}{\partial y}\right) \end{bmatrix}$$ $$\left[\varepsilon\right] = \frac{1}{2} \left[\left[J_u \right] + \left[J_u \right]^T \right]$$ $$\begin{bmatrix} J_{u} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} \quad \begin{bmatrix} J_{u} \end{bmatrix}^{T} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{bmatrix}$$ 10/19/16 GG303 22 IV Infinitesimal strain and the infinitesimal strain tensor [ɛ] (cont.) - C Why consider [ε] if it is an approximation? - Relevant to important geologic deformations - A Fracture - B Earthquake deformation - C Volcano deformation Gelatin Volcano Experiment Hawai'i Space Grant Consortium http://www.spacegrant.hawaii.edu/class_acts/WebImg/gelatinVolcano.gif 10/19/16 GG303 23 ### 15. FINITE STRAIN & INFINITESIMAL STRAIN - C Why consider $[\epsilon]$ if it is an approximation? (cont.) - 2 Terms of the infinitesimal strain tensor [ε] have clear geometric meaning - 3 Can apply principal of superposition (addition) - 4 Infinitesimal deformation is essentially independent of the deformation sequence - 5 Amenable to sophisticated mathematical treatment (e.g., elasticity theory) - 6 Quantitative predictive ability http://www.spacegrant.hawaii.edu/class_acts/WebImg/gelatinVolcano.gif 10/19/16 GG303 C Why consider $[\epsilon]$ if it is an approximation? (cont.) 7 Infinitesimal strain example $$F_3 = \begin{bmatrix} 1.02 & 0.01 \\ 0 & 1.01 \end{bmatrix} \longrightarrow J_{u(3)} = \begin{bmatrix} 0.02 & 0.01 \\ 0 & 0.01 \end{bmatrix} \qquad \text{obtained}$$ regardless of the order of events, but also by superposition $$[F_4][F_3] = \begin{bmatrix} 1.01 & 0 \\ 0 & 1.02 \end{bmatrix} \begin{bmatrix} 1.02 & 0.01 \\ 0 & 1.02 \end{bmatrix} = \begin{bmatrix} 1.0302 & 0.0100 \\ 0 & 1.01 \end{bmatrix} = \begin{bmatrix} 1.0302 & 0.0101 \\ 0.0000 & 1.0302 \end{bmatrix} \qquad \text{Results nearly indistinguishable}$$ $$[I] + \begin{bmatrix} J_{u(3)} \end{bmatrix} + \begin{bmatrix} J_{u(4)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.02 & 0.01 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix} = \begin{bmatrix} 1.0300 & 0.0100 \\ 0.0000 & 1.0302 \end{bmatrix} = \begin{bmatrix} 1.0300 & 0.0100 \\ 0.0000 & 1.0302 \end{bmatrix}$$ 10/19/16 GG303 25