6. SCALARS, VECTORS, AND TENSORS (FOR ORTHOGONAL COORDINATE SYSTEMS)

- I Main Topics
 - A What are scalars, vectors, and tensors?
 - B Order of scalars, vectors, and tensors
 - C Linear transformation of scalars and vectors (and tensors)
 - D Matrix multiplication

9/12/11 GG303 1

6. SCALARS, VECTORS, AND TENSORS Orthogonal Covariant Contravariant Coordinates Coordinates Coordinates Р у u_P Coordinate axes Coordinate axes Coordinate axes meet meet at right meet at oblique at oblique angles, are angles; are parallel angles, are parallel perpendicular to and perpendicular reference axes to reference axes to reference axes 9/12/11 GG303

II What are scalars, vectors, and tensors?

- A Quantities with associated directions
- **B** Tensors
 - 1 Broaden our perspectives; geologists unacquainted with them are handicapped
 - 2 For multi-dimensional thinking and communication
 - 3 They can be extremely useful
 - 4 http://www.grc.nasa.gov/WWW/k-12/Numbers/ Math/documents/Tensors_TM2002211716.pdf

III <u>Order</u> of scalars, vectors, and tensors A Scalars (magnitudes)

- 1 Numbers with no associated direction (zero-order tensors)
- 2 No subscripts in notation
- 3 Examples: Time, mass, length volume
- 4 Matrix representation: 1x1 matrix [x]

9/12/11 GG303

6. SCALARS, VECTORS, AND TENSORS

III Order of scalars, vectors, and tensors (cont.)

- B Vectors (magnitude and a direction)
 - 1 Quantities with one associated direction (first-order tensors)
 - 2 One subscript in notation (e.g., u_x)
 - 3 Examples: Displacement, velocity, acceleration

III Order of scalars, vectors, and tensors (cont.)

- B Vectors (magnitude and a direction) (cont.)
 - 4 Matrix representation: 1xn row matrix, or nx1 column matrix, with n components
 - a Two-dimensional vector (n=2 components):

 $[x y] or [x_1 x_2]$

1 row, 2 columns

 $\left[\begin{array}{c} x \\ y \end{array}\right] or \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$

2 rows, 1 column

x = component in x-direction, y = component in y-direction $x_1 =$ component in x-direction, $x_2 =$ component in y-direction

b Three-dimensional vector (n=3 components):

 $[x y z] or [x_1 x_2 x_3]$

1 row, 3 columns

5 Don't confuse the dimensionality of a tensor with its order

9/12/11 GG303

6. SCALARS, VECTORS, AND TENSORS

III Order of scalars, vectors, and tensors (cont.)

- C Tensors (magnitude and two directions)

 (for the 2nd-order tensors we will consider)
 - 1 Quantities with two associated direction (second-order tensors)
 - 2 Two subscripts in notation (e.g., σ_{xx})
 - 3 Examples: Stress, strain, permeability

III "Order" of scalars, vectors, and tensors (cont.)

- C Tensors (magnitude and two directions) (cont.)
 - 4 Matrix representation: nxn matrix, with n² components
 - a Two-dimensional tensor (4 components):

$$\left[egin{array}{ccc} \sigma_{_{xx}} & \sigma_{_{xy}} \ \sigma_{_{yx}} & \sigma_{_{yy}} \end{array}
ight] or \left[egin{array}{ccc} \sigma_{_{11}} & \sigma_{_{12}} \ \sigma_{_{21}} & \sigma_{_{22}} \end{array}
ight]$$

2 rows, 2 columns

b Three-dimensional tensor (3 components):

$$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} or \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \text{ 3 rows, 3 columns}$$

5 An n-dimensional 2nd-order tensor consists of n rows of n-dimensional vectors

9/12/11 GG303

6. SCALARS, VECTORS, AND TENSORS

IV Linear transformations

- A "Transformations" refers to how components change when the coordinate system changes.
- B "Linear" means the transformation depends on the length of the components, not, for example, on the square of the component lengths.
- C Transformations are used to when we change reference frames in order to present physical quantities from a different (clearer) perspective.
- D Transformations of tensors not covered today

IV Linear transformations (cont.)

- E Linear transformations of scalars
 - 1 Scalar quantities don't change in response to a transformation of coordinates; they are invariant
 - 2 Examples (independent of reference frame orientation)
 - Mass
 - Volume
 - Density

9/12/11 GG303 11

6. SCALARS, VECTORS, AND TENSORS

IV Linear transformations (cont.)

- F Linear transformations of vectors (cont.)
 - 1 Vector components change with a transformation of coordinates

a
$$\mathbf{V} = \mathbf{v}_x + \mathbf{v}_y = \mathbf{v}_x \mathbf{i} + \mathbf{v}_y \mathbf{j}$$

b
$$V = v_{x'} + v_{y'} = v_{x'}i' + v_{y'}j'$$

- c Vector component: **v**_c
- d Scalar component: v_c **Bold**: vector components Unbolded: Scalar components

respectively 12

9/12/11

GG303

IV Linear transformations (cont.)

- F Linear transformations of vectors (cont.)
 - 2 Every component in the unprimed reference frame contributes linearly to each component in the primed reference frame.

$$v_{x'} = a_{x'x} v_x + a_{x'y} v_y$$

 $v_{y'} = a_{y'x} v_x + a_{y'y} v_y$

9/12/11

GG303 13

6. SCALARS, VECTORS, AND TENSORS

IV Linear transformations (cont.)

- F Linear transformations of vectors (cont.)
 - The direction cosines are weighting factors that specify how much each component in one reference frame contributes to a component in the other reference frame.

$$v_{x'} = a_{x'x} v_x + a_{x'y} v_y$$

$$v_y = a_y v_y + a_y v_y$$

 $a_{xx'} = \cos(\theta_{xx'}) = \cos(\theta_{x'x}) = a_{x'x}$ $a_{xy'} = \cos(\theta_{xy'}) = \cos(\theta_{y'x}) = a_{y'x}$

 $a_{yx'} = \cos(\theta_{yx'}) = \cos(\theta_{x'y}) = a_{x'y}$ $a_{yy'} = \cos(\theta_{yy'}) = \cos(\theta_{y'y}) = a_{yy}$

9/12/11 GG303

- IV Linear transformations (cont.)
 - F Linear transformations of vectors (cont.)
 - 4 Transformation rule for vectors

$$a v_{i'} = a_{i'i} v_{i}$$

b Expanded form

$$v_{x'} = a_{x'x} v_x + a_{x'y} v_y$$

 $v_{y'} = a_{y'x} v_x + a_{y'y} v_y$

9/12/11

GG303

15

6. SCALARS, VECTORS, AND TENSORS

- IV Linear transformation of scalars, vectors, and tensors (cont.)
 - C Vectors (cont.)
 - 4 Transformation rule for vectors

$$a v_{i'} = a_{i'j} v_{i}$$

b Expanded form

$$v_{x'} = a_{x'x} v_x + a_{x'y} v_y$$

 $v_{y'} = a_{y'x} v_x + a_{y'y} v_y$

5 Matrix form [V'] = [A][V](Note upper case)

- List what you know
- List what you want to know
- Add the projection terms

$$v \leftarrow V \begin{bmatrix} v_{x'} \\ v_{y} \end{bmatrix} = \begin{bmatrix} v_{x'} \\ v_{y} \end{bmatrix}$$

$$V' \leftarrow V \qquad \left[\begin{array}{c} v_{x'} \\ v_{y'} \end{array} \right] = \left[\begin{array}{cc} a_{x'x} & a_{x'y} \\ a_{y'x} & a_{y'y} \end{array} \right] \left[\begin{array}{c} v_x \\ v_y \end{array} \right]$$

$$V \leftarrow V' \qquad \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} a_{xx'} & a_{xy'} \\ a_{yx'} & a_{yy'} \end{bmatrix} \begin{bmatrix} v_{x'} \\ v_{y'} \end{bmatrix}$$

9/12/11

GG303

6. SCALARS, VECTORS, AND TENSORS V Matrix Multiplication - Examples A 2x1 matrix times a 1x2 matrix gives a 2x2 matrix A General Rule: An nxm matrix times an mxp matrix gives a nxp (3)(1) (3)(2) matrix **B** Examples 2 rows 2 rows 1 A 1x2 matrix times a 2x1 1 row 2 columns 1 column matrix gives a 1x1 matrix 2 columns A 2x2 matrix times a 2x2 = [(1)(3) + (2)(4)] = [11]matrix gives a 2x2 matrix (1)(1) + (2)(0) (1)(0) + (2)(1)(3)(1) + (4)(0) (3)(0) + (4)(1)1 row 1 row 2 columns 2 rows 1 column 1 column 9/12/11 GG303 17