Geology and Geophysics 303
Structural Geology
Course Notes
Fall 2011
MW (lecture) 10:30-11:20, W (lab) 1:30-4:20

Steve Martel
Department of Geology and Geophysics
University of Hawaii

POST 805 956-7797 smartel@hawaii.edu

http://www.soest.hawaii.edu/martel/Stevem.html

/11 GG303

Fractures

http://volcanoes.usgs.gov/Imgs/Jpg/Photoglossary/fissure4_large.JPG

Dike: Fissure Eruption (1/13/11) Aerial View

http://hvo.wr.usgs.gov/kilauea/update/archive/2011/Jan/

8/25/11

GG303

3

Dike: Fissure Eruption (1/13/11) View from the Ground

http://hvo.wr.usgs.gov/kilauea/update/archive/2011/Jan/

8/25/11

GG303

4

Dike: Ship Rock

http://www.rci.rutgers.edu/~schlisch/structureslides/shiprock_LJM.jpg

8/25/11

GG303

5

Giant Dike Swarm, Canada

http://www.mantleplumes.org/images/GiantPatternsFig3_500.gif

Fault, Sierra Nevada, CA

San Andreas Fault Wallace Creek, California

 $http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/illustr/dislocation_3dim.jpg$

G

8/25/11

11

Small Fold Rainbow Basin, California

http://en.wikipedia.org/wiki/File:Rainbow_Basin.JPG

8/25/11 GG303

Large Fold King Oscar Fjord, East Greenland

http://en.wikipedia.org/wiki/King_Oscar_Fjord

8/25/11 GG303 1:

1. INTRODUCTION AND COURSE PHILOSOPHY

I Main Topics

A What is science?

B Course philosophy

8/25/11 GG303 13

1. INTRODUCTION AND COURSE PHILOSOPHY

II What is science?

- A Possession of knowledge as distinguished from ignorance or misunderstanding;
- B Knowledge attained through study and practice
- C Knowledge covering general truths or the operation of general laws especially as obtained and tested through the scientific method

D Scientific Method

Principles and procedures for the *systematic* pursuit of knowledge involving the *recognition* and *formulation* of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses.

1. INTRODUCTION AND COURSE PHILOSOPHY

III Course philosophy

- A Geology can be treated as a scientific discipline
- B Course is intended to challenge students
- C Course emphases
 - 1 Concepts (not vocabulary)
 - 2 Critical thinking (not "cookbooks")
 - 3 Fundamentals (not fashion)
 - 4 Quantitative predictions (Where? When? How big?)

1. INTRODUCTION AND COURSE PHILOSOPHY

D Topics of Course

<u>Topic</u>	<u>Definition</u>	Application to structural geology
Descriptive Geometry	Representation of the spatial relationships of points, lines, and planes by means of projections	Used to describe the geometry of deformed or undeformed bodies ~40% of class
Kinematics	Study of the position of bodies through time without regard to the causative forces	Describes how a body changes shape and/or position through time \sim 20% of class
Mechanics	Study of forces and their effects (e.g., how bodies deform in response to forces)	Used to understand and <u>predict</u> how bodies deform ~20% of class
Geologic Structures	Deformational features in the crust Systematic, organized features	Fractures (including faults) Folds ~20% of class
8/25/11	GG303	17

Why Use Geometry, Kinematics, & Mechanics? Geometry and Kinematics Geometry and Kinematics permitted by probable explanations that violate Newton's Laws 8/25/11 GG303 18

Dislocation in a Crystal

http://www.geol.ucsb.edu/faculty/hacker/geo102C/lectures/dislocation2.jpg

Dislocation in a Lattice

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/illustr/dislocation_3dim.jpg

8/25/11

20

San Andreas Fault Offset in an Orchard

nttp://tommcmanon.typepad.com/pnotos/uncategorized/2008/10/20/sanandreasz.j

8/25/11 GG303 21

Photoelastic Image Stresses around a Hole

http://medesign.seas.upenn.edu/index.php/Main/HomeHistory

23

Photoelastic Image Stresses around a Crack

http://www.webpages.uidaho.edu/~simkat/course_materials/geol542/photoelast.jpg

8/25/11

Differential Geometry: Mathematics of Relativity Theory & Folding

8/25/11