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PHOTOELASTIC STRESS EXPERIMENT: DIKES IN GELATIN

I Main Topics
A Photo-elastic experimental determination of stress fields
B Review of stress contours and stress trajectories

I I Photo-elastic experimental determination of stress fields
A In isotropic materials stress is proportional to strain
B Polarized light traveling through a stressed material splits into two

components polarized parallel to the direction of principal stress.
C These components travel at different speeds through the material

and get out of phase.
D The total phase shift depends on the optic strain coefficient of the

material, the stress state, and the thickness of the material.
E The components interfere to produce colors.  The colors reflect the

total phase shift, and hence the stress field.
III Review of stress contours and stress trajectories

A Stress contours: give magnitude of a stress component.  Here the                 
color fringes (isochromatics)  give contours of the absolute              
magnitude of the difference between the principal stresses                 

B Principal stress trajectories
1 These give the orientation of the principal stresses                  
2 At a given point, the greatest and least principal stress

trajectories will be perpendicular to each other
3 These can also be thought of as "lines of internal force", that is,

as lines along which the principal stresses are transmitted.
Internal forces can not be transmitted across cavities

4 The principal stresses are in some ways analogous to streamlines
in fluid flow.  Principal stresses deflect around a cavity the way
streamlines deflect around an obstacle.

5 With monochromatic light, black lines (or black regions) appear
where the analyzer (the exiting polarizing filter) is parallel to a
principal stress.  This black line (or region) is called an isoclinic.
The isoclinic is not parallel to the principal stresses - the
isoclinic shows points where the principal stresses in the
material are parallel to the analyzer.
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The equations relating strains (ε) and stresses (σ) in a homogeneous isotropic linear elastic

material are:

Normal stresses and strains Shear stresses and strains

ε σ ν σ σxx E xx yy zz= − +[ ]( )1 ε ν σ ε ν σxy E xy yx E yx= + ( ) = + ( )1 1
; 

ε σ ν σ σyy E yy zz xx= − +[ ]( )1 ε ν σ ε ν σyz E yz zy E zy= + ( ) = + ( )1 1
; 

ε σ ν σ σzz E zz xx yy= − +[ ]( )1 ε ν σ ε ν σzx E zx xz E xz= + ( ) = + ( )1 1
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Here E is Young’s modulus and ν is Poisson’s ratio.  For gelatin, the material in our experiment:

E ≈ 1332 Pa (i.e., 1332 Newtons per square meter).

ν  ≈ 0.5.

For our tank experiments, we will let the z-axis point down, the x-axis parallel the short         

dimension of the tank, and the y-axis parallel to the long dimension of the tank.  The reference       

frame origin is at the surface of the gelatin.  We will let tensile stresses be positive;

compressive stresses be negative.                                                      

In our tank, the vertical normal stress is due to the weight of the gelatin and the atmosphere:

σ ρzz gelatin airgz P= − +( )
where

ρgelatin x kg m=1 02 103 3. / = , g m= 9 8 2. sec , and Pair kg m=105 2sec

The maximum shear stress at a point is

τ
σ σ

max =
−1 3

2
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We will be conducting a laboratory experiment using a tank of gelatin to gain insight into

how dikes propagate.  This lab is designed to:

• Illustrate the usefulness of experiments in geology

•  Test whether dike growth can be predicted (or understood) based on (a) a knowledge of

stresses, and (b) an operating hypothesis that dikes open in the direction of the

least compressive stress and propagate in directions perpendicular to the

least compressive stress.

• Make you think about boundary conditions

• Help you "see" stresses

Read (skim) the whole lab before proceeding, and answer all 20 questions on

separate pages.

Experiment A: Hypothesis development for the unperturbed state
of stress (this might take about an hour) 32 PTS

Our first experiment is a thought experiment to deduce the state of stress in the tank of

gelatin without any dikes present.  This will give us something to test (and not just something to

observe) when we conduct the actual experiment.

 We start by examining the strains.  If we assume (a) that the sides and bottom of the fish

tank are complete rigid, and (b) that the gelatin is not sticking (too much) to the sides of the

tank, then (c) the displacements in the gelatin in the x and y directions due to gravity are zero,

and (d) there is no shear stress at the edges of the tank.

1 Based on the simplifying assumption that the tank walls are completely rigid

and prevent horizontal displacements, find all the strains except εzz  for the

unperturbed gelatin in the tank and write them below.  The elastic strains in infinitesimal                            

strain theory are obtained by examining how displacements change as a function of position.

Use a separate page to show any work you need or to provide an explanation.
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2  Using the stress-strain relationships in the last two rows of the left column of the table

below and your answers to the previous question, determine the ratio between the horizontal

stresses σxx  and σyy.  Show your work on a separate page. 5 p t s

Normal stresses and strains Shear stresses and strains

ε σ ν σ σxx xx yy zzE
= − +[ ]( )1 ε ν σ ε ν σxy xy yx yxE E

= + ( ) = + ( )1 1
;  
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3 Using your answers to questions 1 and 2, the stress-strain relationships provided, and the

provided value of Poisson’s ratio, express all the stresses in the tank, solving for any non-

zero stresses in terms of the normal stress σzz.  Show your work on a separate page.

Normal stresses Shear stresses

σ xx =                                                        1pts σ σxy yx= =                                            1pt

σ yy =                                                        1pts σ σyz zy= =                                             1pt

σ zz =σzz σ σzx xz= =                                             1pt

3  On a separate piece of paper plot three Mohr circle diagrams showing the state of stress, one

each for tractions in the xy, yz, and zx planes, respectively.  For the axes of the plots, show

tn/σzz and ts /σzz  instead of σn and τ .  This is called normalizing the plots.       (3 pt/plot)

4  What do you predict the maximum shear stress be in the tank?  Write this as a function of

vertical position z.  2 p t s

5 Based on your answers so far, what do you predict regarding the orientation of the principal

stresses in the tank of gelatin?  Are they uniquely determined? 2 p t s
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Experiment B: Observations of the unperturbed state of stress in
a tank of gelatin. 33 PTS

Now we test our hypotheses experimentally.  Put one polarizing filter on each side of the

tank of gelatin and cross the filters and shine a light through them.  The filters should parallel

the long axis of the tank.  You can rotate the filters, but keep them perpendicular to each other.

6  Describe the color pattern as seen through the filters for the air and for the gelatin. 
2 p t s

7  By rotating the analyzing filter (the one away from the light), determine the principal

stress trajectories in the tank.  Use the isoclinics and orientations of the filters. 
2 p t s

8 Are your observations consistent with your theoretical prediction at the bottom of the

previous page?  Explain thoroughly. 5 p t s

Read questions 9-13 and be prepared to act fast on them.  Then re-cross the polarizing

filters.  Insert the injection needle vertically through a hole about 1/4 of the way from the

center of the tank to the middle.  Wiggle the needle back and forth parallel to the short dimension

of the tank to make a small starter cut.  Then inject a vertical dike with 3 cc of air.

9 Carefully describe the shape of the dike as viewed (a) across the short dimension of the tank

and (b) as viewed across the long dimension of the tank.  Is the dike symmetric with respect

to a horizontal plane?  With respect to a vertical plane? 5 p t s

1 0 Describe as best you can the color field and what it implies in general terms about stresses

around the air dike.  Is it uniform?  Pay special attention to the tips of the dike. 5 p t s

11  What happens to the color field when the dike gets to the surface, and what does this mean in

terms of the stresses in the tank? 2 p t s

12  Describe/trace the dike path. 2 p t s

13  Discuss whether the dike path is consistent with the operating hypothesis. 5 p t s

Cross the polarizers.  Insert the injection needle into the next hole towards the tank

end but aim the needle towards the point where the surface of the gelatin intersects the tank

end; this is to make an inclined dike.  Wiggle the needle back and forth parallel to the short

dimension of the tank to make a small starter cut. Then inject the dike with 3 cc of air.

14  Describe/trace the dike path.  Is it consistent with the operating hypothesis?  Why? 5 p t s
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Experiment C (Fish tank with a surface load) 35 PTS

Now place a load on the surface that spans the short dimension of the tank and cross the

polarizers, setting one horizontal and the other vertical.  The load mass is 0.076 kg, and its

base is 0.101 m long and 0.031 m wide.  You will need to calculate the force/per unit length Fz

in Newtons/meter that the load induces on the gelatin.

15  Draw the color pattern as seen through the filters for the air and for the gelatin. 5 p t s

16 By rotating the analyzing filter (the one away from the light), determine the principal

stress trajectories in the tank by finding the isoclinics and drawing trajectories along the

isoclinics parallel to the analyzer. 5 p t s

17  Inject a series of a few vertical air dikes in the tank B.  After this is done, inject them with

colored water so that they are visible and then trace the dike paths to scale. 5 p t s

Analysis, interpretation, and conclusions

Suppose a positive force (per unit length in the y-direction) FZ is applied perpendicular to

the horizontal surface of an elastic body of infinite depth in the positive z-direction (i.e.,

down), and no displacements occur in the y-direction.  Elasticity theory predicts that, in the

absence of gravity, the stresses in this 2-D case are (Barber, 1992, p. 139-143).

σ θ
πrr
zF

r
= 2 sin σθθ = 0 σ θr = 0

where r is the distance from the point of application of the force on the surface and positive θ is

measured in a right-hand sense about the y-axis.

z

x

Fz

θ
r

18  What is the direction of the stress trajectories that are perpendicular to the most tensile
stress for a normal surface force, and what does this imply for dike paths if our hypothesis
is correct and if gravity were turned off? 5 p t s

19  What is the magnitude of the greatest shear stress as a function of radial distance r?
Express this as a function of Fz,r, and θ. 5 p t s

2 0 The approximate total stress field for experiment C is given by the Matlab functions
“geldike” and “traj2”.  The first converts the stresses due to gravity and those due to a
surface force to a common reference frame and superposes them.  It also finds the magnitude
of the maximum shear stress and the orientation of the principal stresses for the total
stress field.  The traj2 function plots stress trajectories and is a modified version of
matlab’s “quiver” function.  Using the correct value for Fz, use geldike to help test the
hypothesis.  What do you conclude?  Where do the theoretical assumptions differ
significantly from the experimental conditions? 1 0 p t s
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function geldike(Fz,num)
% Calculates the trajectories perpendicular to the direction
% of the least compressive stress and contours of the
% maximum shear stress for the gelatin dike experiment for
% GG303, assuming no displacements in the direction of the
% short dimension of the tank.
% Fz = the force (weight) of the surface load in Newtons (kg m / sec^2)
% If Fz = 0, one obtains the stresses in a tank with no surface load
% num = number of contours on contour plot

% Set material parameters and grid dimensions
rho = 1.02e03;
g = 9.8;
nu = 0.5;
E = 1332;
G = 444;
%X = -0.245:0.01:0.245;
%X = -0.2475:0.005:0.2475;
X = -0.0975:0.005:0.0975;
%Z = 0:0.01:0.2;
Z = 0:0.005:0.2;
Pair = 1e06;

[x,z] = meshgrid(X,Z);
r = sqrt(x.*x + z.*z);
theta = atan2(x,z);
zip = zeros(size(x));

% Find direction cosines between x,z and r,t axes
axr = x./r;
azr = z./r;
axt = azr;
azt = -axr;

% Find stresses due to gravity
szzg = -rho*g*z - Pair;
sxxg = (nu/(1-nu)) * szzg;
sxzg = zip;
szxg = zip;
syyg = (nu/(1-nu)) * szzg;

% Find stresses due to surface force Fz
%sint = sin(theta);
sint = -z./r;
srrF = (2*Fz/pi)*(sint./r);
srtF = zip;
strF = zip;
sttF = zip;

% Convert stresses due to surface forces to x,y frame
sxxF = axr.*axr.*srrF...
     + axr.*axt.*srtF...
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 + axt.*axr.*strF...
 + axt.*axt.*sttF;

sxzF = axr.*azr.*srrF...
     + axr.*azt.*srtF...

 + axt.*azr.*strF...
 + axt.*azt.*sttF;

szxF = azr.*axr.*srrF...
     + azr.*axt.*srtF...

 + azt.*axr.*strF...
 + azt.*axt.*sttF;

szzF = azr.*azr.*srrF...
     + azr.*azt.*srtF...

 + azt.*azr.*strF...
 + azt.*azt.*sttF;

% Superpose the gravitational stresses and those due to
% the surface force
sxx = sxxg + sxxF;
sxz = sxzg + sxzF;
szx = szxg + szxF;
szz = szzg + szzF;

% Contour the maximum shear stress
% The formula below can be derived from a Mohr circle
f igu re (1 )
c l f
maxshear = (1/2)*sqrt( (sxx-szz).^2 + (sxz-szx).^2 );
colormap(jet)
br ighten( jet ,0.8)
contourf(x,-z,maxshear,num);
hold on
l ine( [min(X) ,max(X) ] , [m in(Z) ,min(Z) ] ) ;

x label( 'x ' )
ylabel( 'z ' )
axis('equal');
title('Contours of maximum shear stress')

% Contour the maximum shear stress
% The formula below can be derived from a Mohr circle
f igu re (2 )
c l f
maxshear = (1/2)*sqrt( (sxx-szz).^2 + (sxz-szx).^2 );
cc = contour(x,-z,maxshear,num);
clabel(cc);
hold on
l ine( [min(X) ,max(X) ] , [m in(Z) ,min(Z) ] ) ;

x label( 'x ' )
ylabel( 'z ' )
axis('equal');
title('Contours of maximum shear stress')
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% Find the trajectories perpendicular to the least
% compressive stress
f igure (3 )
c l f
ang = 0.5*atan2(sxz,(szz-sxx)/2);
axis('equal');
index = find(x<0);
ang(index) = ang(index) + pi;
traj2(x,-z,cos(ang),sin(ang))
x label( 'x ' )
ylabel( 'z ' )
axis('equal');
title('Direction of most compressive stress')
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function traj2(arg1,arg2,arg3,arg4,arg5,arg6)
%TRAJ2 Trajectory plot.  Modified version of QUIVER version 4.1
% TRAJ2(X,Y,DX,DY) draws little headless arrows at every (X,Y) pair in
% matrices X and Y. The (DX,DY) pairs in matrices DX and DY
% determine the direction and magnitude of the arrows.
%       In order for this function to work properly, DX and DY
%       MUST be equal to the cosine and sine, respectively, of the
%       orientation of the headless arrows.
%
% TRAJ2(x,y,DX,DY), with two vector arguments replacing the first
% two matrix arguments, must have length(x) = n and
% length(y) = m where [m,n] = size(DX) = size(DY).  In this case, the
% arrows are the quads (x(j), y(i), DX(i,j), DY(i,j)).
% Note that x corresponds to the columns of DX and DY and y corresponds
% to the rows.
%
% TRAJ2(DX,DY) uses x = 1:n and y = 1:m. In this case DX and DY
% are defined over a geometrically rectangular grid.
%
% TRAJ2(X,Y,DX,DY,S) and TRAJ2(DX,DY,S) apply scalar S as a scale
% factor to the lengths of the arrow. For example, S = 2 doubles
% their relative length and S = 0.5 halves them.
%
% A final trailing string argument specifies linetype and color using
% any legal line specification as described under the plot command.
%
% For example, try
%    xord = -2:.2:2;
%    yord = -2:.2:2;
%    [x,y] = meshgrid(xord,yord);
%    z = x .* exp(-x.^2 - y.^2);
%    [px,py] = gradient(z,.2,.2);
%    contour(x,y,z),hold on, quiver(x,y,px,py), hold off
%
% See also GRADIENT, COMPASS, FEATHER, ROSE.

% Charles R. Denham, MathWorks 3-20-89
% Modified 12-19-91, LS.
%       Modified by SJM 10/22/93
% Copyright (c) 1984-93 by The MathWorks, Inc.

xx = [0 1 NaN NaN NaN].';
yy = [0 0 NaN NaN NaN].';
arrow = xx + yy.*sqrt(-1);

eval(['last = arg' int2str(nargin) ';']);
if isstr(last)

eval(['style = arg' int2str(nargin), ';']);
narg = nargin - 1;

else
style = 'r-';
narg = nargin;
eval(['last = arg' int2str(narg-1) ';']);
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if isstr(last)
error('Only the final argument can be a string.');

end
end
if narg == 0

error('First 2 or 4 arguments must be numeric.')
end
eval(['lastdim = min(size(arg' int2str(narg) '));']);
if lastdim == 1

if isstr(eval(['arg' int2str(narg)]))
error('Scalar scale argument expected.')

end
eval(['scale = arg' int2str(narg) ';']);
narg = narg - 1;

else
scale = 1;

end
if narg == 0

error('First 2 or 4 arguments must be numeric.')
end
if min(size(arg1)) > 1

[m,n] = size(arg1);
else

m = max(size(arg1));
n = max(size(arg2));

end
if narg == 2

if isstr(arg1) | isstr(arg2)
error('Input must be numeric.')

end
[xx,yy] = meshgrid(1:n, 1:m);
px = arg1;
py = arg2;

else
if isstr(arg1) | isstr(arg2) | isstr(arg3) | isstr(arg4)

error('Input must be numeric.')
end
if min(size(arg1)) == 1 & min(size(arg2)) == 1

[xx,yy] = meshgrid(arg1,arg2);
else

xx = arg1;
yy = arg2;

end
px = arg3;
py = arg4;

end

% figure out delx and dely so spacing is accounted for in z
delx = xx(1,2)-xx(1,1);
dely = yy(2,1)-yy(1,1);

grid = xx + yy.*sqrt(-1); grid = grid(:);
px = px(:); py = py(:);
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maxlen = max(sqrt((px/delx).^2+(py/dely).^2));
z = (px + py.*sqrt(-1)).';
% The next active line was modified 10/22/93 by SJM
% The scaling factor of 0.90 was reset to 0.40
scale = scale*0.40 ./ maxlen;
%a = scale * arrowU * z + ones(5,1) * grid.U; %mathworks suggestion
a = scale * arrow * z + ones(5,1) * grid.';
% append nan's so we get one handle
a = [a; nan*ones(1,size(a,2))];
a = a(:);
cax = newplot;
plot(real(a), imag(a), style);
next = lower(get(cax,'NextPlot'));
if ~ishold

minx = min(min(xx));
miny = min(min(yy));
maxx = max(max(xx));
maxy = max(max(yy));
axis([minx maxx miny maxy]);
v iew(0 ,90) ;

end
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Directions for preparing ordnance-grade gelatin

Date: Tue, 14 Nov 2000 11:02:00 -0800

To: Steve Martel <martel@soest.hawaii.edu>

From: Jordan Muller <mullerj@pangea.stanford.edu>

Subject: Re: How do you cook gelatin?

This is really where the fun begins.  I put a large pot with half of the amount of water for your

gelatin on a lab hot plate.  Let that water get really hot, although I don't think that it has to boil.

Add the gelatin powder and throw in the stirring rod that should come with the hot plate or just

stir it for a while yourself.  After the particles look dissolved, turn off the heat.  Then you can

throw in the remaining half of the water.  Make that water cold to help cool down the mixture

(adding scalding water to the tanks is what cracked some of them).  Stir a little bit, then fill the

tank.  We filled the tanks by siphoning the mixture.  This may also help prevent cracking due to

heat.  The gelatin mixture we used was 1.5 wgt.% powder.  This means that for one tank the mix

is 6 liters of water and 90 grams of powder.

(For 5 liters of water use 75 grams of powder)


