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SPHERICAL PROJECTIONS 
 
I Main Topics 

A What is a spherical projection? 
B Spherical projection of a line 
C Spherical projection of a plane 
D Determination of fold axes 
E Free spherical projection program for the MacIntosh:  
 "Stereonet" by Rick Allmendinger at Cornell University 

II What is a spherical projection? 
A A 2-D projection for describing the orientation of 3-D features.  A 

spherical projection shows where lines or planes that intersect the 
surface of a (hemi)sphere, provided that the lines/planes also pass 
through the center of the (hemi)sphere. 

B Great circle: intersection of the surface of a sphere with a plane that 
passes through the center of the sphere (e.g., lines of longitude) 

C Small circle: intersection of the surface of a sphere with a plane that 
does not pass through the center of the sphere (e.g., lines of latitude).  
A line rotated about an axis traces a small circle too. 

B Types of spherical projections 
1 Equal angle projection (Wulff net)  
2 Equal area projection (Schmidt net) 

III Spherical projection of a line 
A Technique 

1 A line is at the intersection of two planes: 1) a vertical plane coinciding 
with the trend of the line and (2) an inclined plane coinciding with the 
plunge of the line. 

2 Trend and plunge: The point representing a line plots away from the 
center of the spherical plot in the direction of the trend of the line.  
The trend of a l ine is measured along a horizontal great 
circle.  The plunge of the line is measured along a vertical 
great circle. 

3 Rake: If the strike and dip of a plane is specified, the rake (pitch) of a 
line in the plane can be measured along the cyclographic trace of the 
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great circle representing that plane.  Rake is measured from the 
direction of strike. 

B Plane containing two lines: Two intersecting lines uniquely define a plane.  
The cyclographic trace of the great circle representing that plane will pass 
through the points representing the lines. 

C Angle between two lines: This angle is measured along the cyclographic 
trace of the unique great circle representing the plane containing the two 
lines 

IV Spherical projection of a plane 
A A plane plots as the cyclographic trace of a great circle 
B Strike and dip: The strike is measured around the perimeter of 

the primitive circle.  The dip of the line is measured along a 
vertical great circle perpendicular to the line of strike. 

C Intersection of two planes 
1 Two planes intersect in a line, which projects as a point in a spherical 

projection.  This point is at the intersection of the cyclographic traces 
of the two planes. 

2 The intersection is also 90° from the poles to the two planes; these 
90° angles are measured along the great circles representing the 
planes containing the poles. 

D Angles between planes 
1 The angle between two planes is the angle between the poles to the 

planes.  This angle is measured along the cyclographic trace of the 
unique great circle representing the plane containing the poles to the 
two planes. 

2 For equal angle projections alone, the angle between two planes is the 
angle between tangent lines where the cyclographic traces of two 
planes intersect (hence the name of the projection) 

V Fold axes of cylindrical folds 
A The fold axis is along the line of intersection of beds (β diagram). (See 

IVA) 
B The fold axis is perpendicular to the plane containing the poles to beds (π 

diagram); this approach works better for many poles to beds  (See IIIA) 
 

Geometrical Properites of Equal Angle and Equal Area projections  
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(From Hobbs, Means, and Williams, 1976, An Outline of Structural Geology) 
 

Property Equal angle projection Equal area projection 
Net type Wulff net Schmidt net 
Projection does not 
preserve ... 

Areas Angles 

Projection  
preserves ... 

Angles Areas 

A line project as a ... Point Point 
A great circle projects as 
a ... 

Circle Fourth-order quadric 

A small circle projects as 
a ... 

Circle Fourth-order quadric 

Distance from center of 
primitive circle to 
cyclographic trace 
measured in direction of 
dip 

R tan π
4
− dip
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  R 2 sin π

4
− dip
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

Distance from center of 
primitive circle to pole of 
plane measured in the 
direction opposite to 
that of the dip 

R tan dip
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  R 2 sin dip

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

Distance from center of 
primitive circle to point 
that represents a 
plunging line 

R tan π
4
− plunge

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  R 2 sin π

4
− plunge

2
⎛ 
⎝ 
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⎠ 
⎟  

Best use Measuring angular 
relations 

Contouring orientation 
data 
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Lab 5 Spherical Projections 
 
Use a separate piece of paper for each exercise, and include printouts of your 
Matlab work.  125 points total. 
 
Exercise 1: Plots of lines (30 points total) 
Plot and neatly label the following lines on an equal angle projection: 

Line Trend (1 point each) Plunge (1 point each) 

A N40°W 4° 

B S30°W 10° 

C N85°E 30° 

 
Draw with a light line the cyclographic traces of the three planes containing the three pairs of 
lines (1), determine the angles between the lines (1), and label the angles on the stereographic 
plot (1). 

Lines Angle in degrees (3 points each) 

A & B  

B & C  

C & A  

 
Now check your results using dot products of unit vectors along the lines.  First find the 
direction cosines for each line using Matlab. 
Line α 

(1 point each)  

β 

(1 point each)  

γ 

(1 point each)  

A    
B    

C    
 
Now take the dot products and use them to find the angles between the lines (remember to 
convert to degrees) 
Lines Dot product (1 point each) Angle (°) (1 point each) 
A & B   
B & C   
C & A   
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Exercise 2: Plots of planes (36 points total) 
Plot and neatly label the following planes (strike and dip follow right-hand rule convention) 
and the poles to those planes on an equal angle projection.  Use a fairly heavy line to designate 
the planes.   

Plane Strike 
1 point each 

Dip 
1 point each 

Trend of pole 
1 point each 

Plunge of pole 
1 point each 

F 256° 22°   

G 68° 72°   

H 145° 44°   

 
Draw with a light line the cyclographic traces of the three planes containing the three pairs of 
poles (1), determine the angles between the lines (1), and label the angles on the stereographic 
plot (1). 

Planes Angle in degrees (3 points each) 

F & G  

G & H  

H & F  

 
Now check your results using dot products of unit vectors along the lines.  First find the 
direction cosines for each pole using Matlab 
Line α 

(1 point each)  

β 

(1 point each)  

γ 

(1 point each)  

Pole to plane F    
Pole to plane G    

Pole to plane H    
 
Now take the dot products of the unit normals, and use them with Matlab’s acos function to 
find the angles between the lines (remember to convert to degrees) 
Poles to planes… Dot product (1 point each) Angle (°) (1 point each) 
F & G   
G & H   
H & F   
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Exercise 3: Intersection of planes problem (fold axes) (18 points total) 
Using a β-plot (direct intersection of planes), determine the trend and plunge of the fold axis for 

a cylindrical fold by plotting the bedding attitudes listed below and finding the trend and plunge 
of the line of intersection. 

Bed Strike (1 point) Dip (1 point) 

E1 84° 60°S 

E2 117° 90° 

 
Fold axis trend (1 point) 

 
Fold axis plunge (1 point) 

 
 
Now check your results using vector algebra.  First find the direction cosines for each pole using 
Matlab 
Line α 

(1 point each)  

β 

(1 point each)  

γ 

(1 point each)  

Pole to E1 (n1)    
Pole to E2 (n2)    
 
Now take the cross products of the unit normals, and find the trend and plunge of the vector 
that is produced.  Do not give an answer with a negative plunge, and give the angles in degrees, 
not radians. 

n1x n2 
(1 point) 

|n1x n2| 
(1 point) 

α 

(1 point)  

β 

(1 point)  

γ 

(1 point)  

                ,                 ,     
 

Cross product trend (°) 
(1 point) 

Cross product plunge (°) 
(1 point) 
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Exercise 4 (24 points total) 
First find the orientations of the poles to bedding, plot the poles, and then use a π-plot (poles 

to bedding) to determine the trend and plunge of the fold axis for a cylindrical fold.  Show the 
cyclographic trace of the plane containing the poles in a light line 
 

Plane Strike 
 

Dip 
 

Trend of pole 
2 point each 

Plunge of pole 
2 point each 

F1 345° 40°E   

F2 213° 68°W   

 
 
 

Fold axis trend (2 point) 
 

Fold axis plunge (2 point) 
 

 
Now check your results using vector algebra.  First find the direction cosines for each pole using 
Matlab 
Line α 

(1 point each)  

β 

(1 point each)  

γ 

(1 point each)  

Pole to F1 (n3)    
Pole to F2 (n4)    
 
Now take the cross products of the unit normals, and find the trend and plunge of the vector 
that is produced.  Do not give an answer with a negative plunge, and give the angles in degrees, 
not radians. 

Cross product 
(1 point) 

|n3 x n4| 
(1 point) 

α 

(1 point)  

β 

(1 point)  

γ 

(1 point)  

                ,                 ,     
 

Cross product trend (°) 
(1 point) 

Cross product plunge (°) 
(1 point) 
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Exercise 5 (17 points total) 
Slope stability sliding block problem (orientation-of-intersection problem) 

Three sets of fractures are present in the bedrock along the shores of a reservoir.  You are 
to evaluate whether fracture-bounded blocks might pose a hazard to the reservoir by being able 
to slide into the reservoir.  The attitudes of the fractures are: 
 

Set Strike Dip 

1 0° 40°E 

2 96° 30°S 

3 264° 22°N 

 
On the north side of the reservoir the ground surface slopes due south at 30°.  On the south 

side of the reservoir the ground surface slopes due north at 45°. 
Noting that (a) a fracture-bounded block can only slide parallel to the intersection of two 

fractures, and (b) a block can slide only if the slide direction has a component in the downhill 
direction, determine the trend and plunge of possible sliding directions.  After considering the 
sliding directions and the geometries of the slopes, do any of these directions seem like they 
might pose a hazard to the reservoir?  Why?  Drawing a north-south cartoon cross section may 
help you here. 

 
Scoring: 2 points for each of the three planes = 6 points total 
  2 points for each of the three intersections = 6 points total 
  5 points for the discussion  
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% Matlab script wullf4 to generate Wulff nets 
% This generates a wullf (equal angle) net by typing “wulff4” 
 
% Definition of variables 
% x,y: center of arc 
% r: radius of arc 
% thetaa: lower limt of arc range 
% thetab: upper limit of arc range 
 
% Clear screen 
clf; 
figure(1) 
clf 
% Set radius of Wulff net primitive circle 
bigr = 1.2; 
phid = [2:2:88]; % Angular range for great circles 
phir = phid*pi/180; 
omegad = 90 - phid;  
omegar = pi/2-phir; 
 
% Set up for plotting great circles with centers along 
% positive x-axis 
x1 = bigr.*tan(phir); 
y1 = zeros(size(x1)); 
r1 =  bigr./cos(phir); 
theta1ad = (180-80)*ones(size(x1)); 
theta1ar = theta1ad*pi/180; 
theta1bd = (180+80)*ones(size(x1)); 
theta1br = theta1bd*pi/180; 
 
% Set up for plotting great circles  
% with centers along the negative x-axis 
x2 = -1*x1; 
y2 = y1; 
r2 = r1; 
theta2ad = -80*ones(size(x2)); 
theta2ar = theta2ad*pi/180; 
theta2bd =  80*ones(size(x2)); 
theta2br = theta2bd*pi/180; 
 
 
% Set up for plotting small circles 
% with centers along the positive y-axis 
y3 = bigr./sin(omegar); 
x3 = zeros(size(y3)); 
r3 =  bigr./tan(omegar); 
theta3ad = 3*90-omegad; 
theta3ar = 3*pi/2-omegar; 
theta3bd = 3*90+omegad; 
theta3br = 3*pi/2+omegar; 
 
% Set up for plotting small circles 
% with centers along the negative y-axis 
y4 = -1*y3; 
x4 = x3; 
r4 =  r3; 
theta4ad = 90-omegad; 
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theta4ar = pi/2-omegar; 
theta4bd = 90+omegad; 
theta4br = pi/2+omegar; 
 
% Group all x, y, r, and theta information for great cricles  
phi = [phid, phid]; 
x = [x1, x2]; 
y = [y1, y2]; 
r = [r1, r2]; 
thetaad = [theta1ad, theta2ad]; 
thetaar = [theta1ar, theta2ar]; 
thetabd = [theta1bd, theta2bd]; 
thetabr = [theta1br, theta2br]; 
  
% Plot portions of all great circles that lie inside the 
% primitive circle, with thick lines (1 pt.) at 10 degree increments 
for i=1:length(x) 
  thd = thetaad(i):1:thetabd(i); 
  thr = thetaar(i):pi/180:thetabr(i); 
 xunit = x(i) + r(i).*cos(thr); 
 yunit = y(i) + r(i).*sin(thr); 
 p = plot(xunit,yunit,'LineWidth',0.5); 
 hold on 
end 
 
% Now "blank out" the portions of the great circle cyclographic traces  
% within 10 degrees of the poles of the primitive circle. 
rr =  bigr./tan(80*pi/180); 
ang1 = 0:pi/180:pi; 
xx = zeros(size(ang1)) + rr.*cos(ang1); 
yy = bigr./cos(10*pi/180).*ones(size(ang1)) - rr.*sin(ang1); 
p = fill(xx,yy,'w') 
yy = -bigr./cos(10*pi/180).*ones(size(ang1)) + rr.*sin(ang1); 
p = fill(xx,yy,'w') 
 
for i=1:length(x) 
  thd = thetaad(i):1:thetabd(i); 
  thr = thetaar(i):pi/180:thetabr(i); 
 xunit = x(i) + r(i).*cos(thr); 
 yunit = y(i) + r(i).*sin(thr); 
 if mod(phi(i),10) == 0 
  p = plot(xunit,yunit,'LineWidth',1); 
  angg = thetaad(i) 
 end 
 hold on 
end 
 
% Now "blank out" the portions of the great circle cyclographic traces  
% within 2 degrees of the poles of the primitive circle. 
rr =  bigr./tan(88*pi/180); 
ang1 = 0:pi/180:pi; 
xx = zeros(size(ang1)) + rr.*cos(ang1); 
yy = bigr./cos(2*pi/180).*ones(size(ang1)) - rr.*sin(ang1); 
p = fill(xx,yy,'w') 
yy = -bigr./cos(2*pi/180).*ones(size(ang1)) + rr.*sin(ang1); 
p = fill(xx,yy,'w') 
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% Group all x, y, r, and theta information for small circles 
phi = [phid, phid]; 
x = [x3, x4]; 
y = [y3, y4]; 
r = [r3, r4]; 
thetaad = [theta3ad, theta4ad]; 
thetaar = [theta3ar, theta4ar]; 
thetabd = [theta3bd, theta4bd]; 
thetabr = [theta3br, theta4br]; 
 
% Plot primitive circle 
thd = 0:1:360; 
thr = 0:pi/180:2*pi; 
xunit = bigr.*cos(thr); 
yunit = bigr.*sin(thr); 
p = plot(xunit,yunit); 
hold on 
  
% Plot portions of all small circles that lie inside the 
% primitive circle, with thick lines (1 pt.) at 10 degree increments 
for i=1:length(x) 
  thd = thetaad(i):1:thetabd(i); 
  thr = thetaar(i):pi/180:thetabr(i); 
 xunit = x(i) + r(i).*cos(thr); 
 yunit = y(i) + r(i).*sin(thr); 
% blug = mod(thetaad(i),10) 
 if mod(phi(i),10) == 0 
  p = plot(xunit,yunit,'LineWidth',1); 
  angg = thetaad(i) 
 else 
  p = plot(xunit,yunit,'LineWidth',0.5); 
 end 
 hold on 
end 
 
% Draw thick north-south and east-west diameters 
xunit = [-bigr,bigr]; 
yunit = [0,0]; 
p = plot(xunit,yunit,'LineWidth',1); 
hold on 
xunit = [0,0]; 
yunit = [-bigr,bigr]; 
p = plot(xunit,yunit,'LineWidth',1); 
hold on 
 
% Parameters to control appearance of plot 
% THESE COME AFTER THE PLOT COMMANDS!!! 
axis([-bigr bigr -bigr bigr]) 
% axis ('square').  BAD way to get aspect ratio of plot.  It 
% also considers titles and axis labels when scaling the figure! 
set(gca,'DataAspectRatio',[bigr,bigr,bigr]) 
%axes('Position',[0,0,1,1]); 
%axes('AspectRatio',[1,1]); 
set(gca,'Visible','off');  % This turns off the visibility of the axes 
% figure('PaperPosition',[1,3,6,6]); 
print -dill wulffnet.ill 
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print -deps wulffnet.eps 
% end 
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% Matlab script stereonet 
% To plot lines and planes in stereographic 
% (equal-angle) projections 
clf 
% Read input data on planes 
load planes.dat 
% Data in column 1 are strikes, and data in column 2 are dips 
% of planes, with angles given in degrees 
strike = planes(:,1)*pi/180; 
dip = planes(:,2)*pi/180; 
num = length(strike); 
% find cyclographic traces of planes and plot them 
R = 1; 
rake = 0:pi/180:pi; 
for i=1:num; 
 plunge = asin(sin(dip(i)).*sin(rake)); 
 trend = strike(i) + atan2(cos(dip(i)).*sin(rake), cos(rake)); 
 rho = R.*tan(pi/4 - (plunge/2)); 
 % polarb plots ccl from 3:00, so convert to cl from 12:00 
 polarb(pi/2-trend,rho,'-') 
 hold on  
end 
 
load lines1.dat 
% Data in column 1 are trends, data in column 2 are plunges 
% of lines, with angles given in degrees 
trend1 = lines1(:,1); 
plunge1 = lines1(:,2); 
num = length(lines1(:,1)); 
R = 1; 
trendr1 = trend1*pi/180; 
plunger1 = plunge1(:,1)*pi/180; 
rho1 = R.*tan(pi/4 - ((plunger1)/2)); 
for i=1:num; 
 % polarb plots ccl from 3:00, so convert to cl from 12:00 
 polarb(pi/2-trendr1(i),rho1(i),'o') 
 hold on  
end 
 
load lines2.dat 
% Data in column 1 are trends, data in column 2 are plunges 
% of lines, with angles given in degrees 
trend2 = lines2(:,1); 
plunge2 = lines2(:,2); 
num = length(lines2(:,1)); 
R = 1; 
trendr2 = trend2*pi/180; 
plunger2 = plunge2*pi/180; 
rho2 = R.*tan(pi/4 - ((plunger2)/2)); 
for i=1:num; 
 % polarb plots ccl from 3:00, so convert to cl from 12:00 
 polarb(pi/2-trendr2(i),rho2(i),'*') 
 hold on  
end
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The following file, called lines1.dat, provides an example of an input file for the stereonet plotting program 
 
19 02 
43 16 
52 03 
51 08 
110 18 
190 02 
232 04 
235 10 
242 30 
000 65 
340 22 
270 34 
 
The file lines2.dat has the same format. 
 
The following file, called planes.dat, provides an example of an input file for the stereonet plotting program 
 
20 20 
230 72.5048 


