- **I** Main Topics
 - A Local geometry of a plane curve (cylindrical fold)
 - B Local geometry of a curved surface (3D fold)
 - C Numerical evaluation of curvature (geometry)
 - D Kinematics of folding
 - E Fold terminology and classification (geometry)

11/27/13 GG303 1

14. Folds

 $http://upload.wikimedia.org/wikipedia/commons/a/ae/Caledonian_orogeny_fold_in_King_Oscar_Fjord.jpg$

Anticline, New Jersey

Syncline, Rainbow Basin, California

 $http://en.wikipedia.org/wiki/File:NJ_Route_23_anticline.jpg \\ http://en.wikipedia.org/wiki/File:Rainbow_Basin.JPG$

11/27/13 GG303

14. Folds

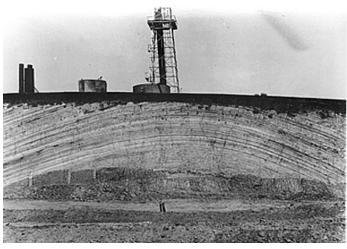
Folds, New South Wales, Australia

http://en.wikipedia.org/wiki/File:Folded_Rock.jpg

Folds in granite, Sierra Nevada, California

GG303

Energy Resources and an Anticline



http://www.wou.edu/las/physci/Energy/graphics/OilAnticline.jpg

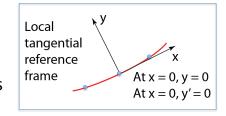
5

14. Folds

II Local geometry of a plane curve (cylindrical fold) in a tangential reference frame

11/27/13

A Express the plane curve as a power series:



1 $y = \left[\dots + C_{-2}x^{-2} + C_{-1}x^{-1} \right] + \left[C_0x^0 \right] + \left[C_1x^1 + C_2x^2 + C_3x^3 + \dots \right]$ At x= 0, y = 0, so all the coefficients for terms with non-positive exponents must be zero

2
$$y = C_1 x^1 + C_2 x^2 + C_3 x^3 + \dots$$

11/27/13 GG303

II Local geometry of a plane curve (cylindrical fold) in a tangential reference frame

2
$$y = C_1 x^1 + C_2 x^2 + C_3 x^3 + \dots$$

Now examine v'

3
$$y' = C_1 x^0 + 2C_2 x^1 + 3C_3 x^2 + ... = 0$$

At
$$x = 0$$
, $y' = 0$, so $C_1 = 0$, so

4
$$y = C_2 x^2 + C_3 x^3 + ... = 0$$

As x → 0, higher-order terms vanish

$$5 \lim_{x \to 0} y = C_2 x^2$$

6
$$\lim_{x\to 0} k = |y(s)''| = |y(x)''| = 2C_2$$

Local tangential reference frame At x = 0, y = 0At x = 0, y' = 0

> So all plane curves are locally second-order (parabolic).

11/27/13 GG303

14. Folds

- III Local geometry of a curved surface in a tangential reference frame
 - A Plane curves are formed by intersecting a curved surface with a plane containing the surface normal
 - B These plane curves z = z(x,y) are locally all of second-order, so any continuous surface is locally 2nd order. The general form of such a surface in a tangential frame is $z = Ax^2 + Bxy + Cy^2$

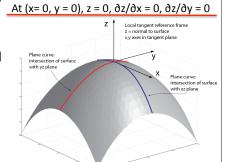
This is the equation of a paraboloid: all surfaces are locally either ellliptic

C Example: curve (normal section) in the arbitrary plane y = mx

or hyperbolic paraboloids

$$y = \lim_{x \to 0, y \to 0} z = Ax^2 + Bx(mx) + C(mx)^2 = (A + Bm + Cm^2)x^2$$

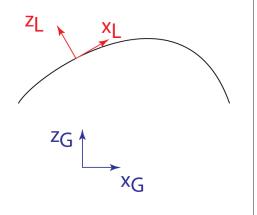
11/27/13 GG303



Parabolic plane curves

$$= \left(A + Bm + Cm^2\right) x^2$$
Sum of constants

- III Local geometry of a curved surface ... (cont.)
 - D Dilemma
 - Evaluating curvatures of a surface z_L=z_L(x_L,y_L), where"z_L" is normal to the surface, is easy
 - 2 The "global" reference frame, $z_g = z_g (x_g, y_g)$, in which data are collected are usually misaligned with the tangential local reference frame
 - 3 Alignment is generally difficult

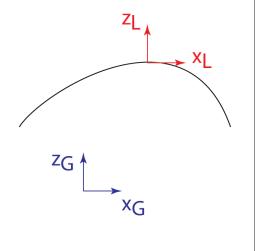


11/27/13

14. Folds

GG303

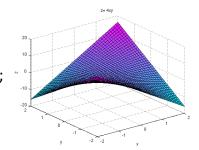
- III Local geometry of a curved surface ... (cont.)
 - E "resolution"
 - 1 At certain places the local and global reference frames are easily aligned though: at the summits or bottoms of folds
 - 2 We will evaluate the curvatures there, leaving the more general problem to "later"



- III Local geometry of a curved surface ... (cont.)
 - F Example (analytical)

$$z_G = 4x_Gy_G$$

- 1 First plot and evaluate z_G near (0,0)
- >> [X,Y] = meshgrid([-2:0.1:2]);
- >> Z=4*X.*Y;
- >> surf(X,Y,Z);
- >> xlabel('x'); ylabel('y');
- >> zlabel('z'); title('z= 4xy')



This is a saddle

11

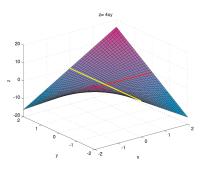
11/27/13 GG303

14. Folds

F Example (analytical) (cont.)

$$z_G = 4x_Gy_G$$

- 2 Now evaluate the first derivatives
 - a $\partial z_G / \partial x_G = 4y_G$
 - b $\partial z_G / \partial y_G = 4x_G$
 - c Both derivatives equal zero at (0,0)
- 3 The local tangential and global reference frames are aligned at (0,0)



- >> hold on
- >> plot3(X(21,:),Y(21,:),Z(21,:),'r')
- >> plot3(X(:,21),Y(:,21),Z(:,21),'y')

F Example (analytical) (cont.)

$$z_G = 4x_Gy_G$$

11/27/13

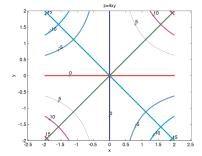
4 Now evaluate the second derivatives

a
$$\partial^2 z_G / \partial x_G^2 = 0$$

b
$$\partial^2 z_G / \partial x_G \partial y_G = 4$$

c
$$\partial^2 z_G / \partial y_G \partial x_G = 4$$

$$d \partial^2 z_G / \partial y_G^2 = 0$$



>> c=contour(X,Y,Z); clabel(c);

>> xlabel('x'); ylabel('y');

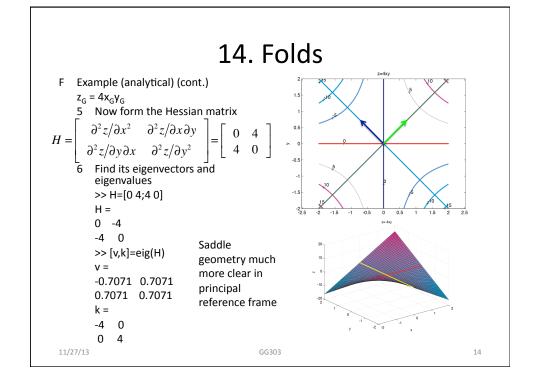
>> title('z=4xy')

>> hold on

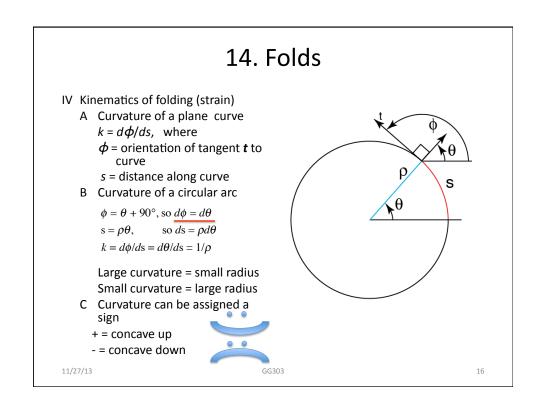
>> plot([0 0],[-2 2],[-2 2],[-2,2],[-2 2],[0 0],[-2 2],[2 -2])

>> axis equal

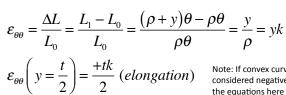
13



14. Folds IV Evaluation of curvature from discrete data (geometry) Three (non-colinear) points define a plane – and a circle. Step B Step C Locate three discrete noncolinear points along a curve (e.g., L, M, N) C Draw the perpendicular bisectors to line segments LM and MN Steps C-D Steps E-F D Intersect perpendicular bisectors at the center of curvature C. E The radius of curvature (ρ) equals the distance from Ć to L, M, or N. Portion of circular arc F The curvature is reciprocal of the radius of curvature $(k = 1/\rho)$ $k = 1/\rho$ G Local geometry of a curve also is circular! 11/27/13 GG303 15

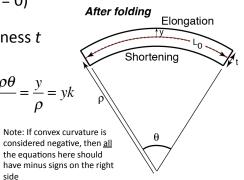


- V Kinematics of folding (cont.)
 - D Layer-parallel normal strain (ε_{Θ}) for cylindrical folds
 - 1 Mid-plane of layer (y = 0)maintains length L_0
 - 2 Layer maintains thickness t during folding



 $\varepsilon_{\theta\theta} \left(y = \frac{-t}{2} \right) = \frac{-tk}{2}$ (contraction)

Before folding



17

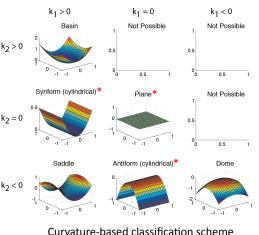
GG303

14. Folds

V Kinematics of folding (cont.)

11/27/13

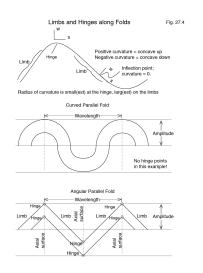
- Layer-parallel normal strain for three-dimensional folds
 - 1 Gauss' Theorem: If the product of the principal curvatures (i.e., the Gaussian curvature K = k₁k₂) is constant, then a deformed surface remains unstrained*
 - 2 For geologic folds, the Gaussian curvature invariably changes during folding, so layer-parallel strains will occur on the surfaces, as well as interiors, of folded layers



Curvature-based classification scheme for 3D folds

11/27/13 GG303 18

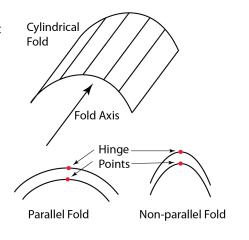
- VI Fold terminology and classification
 - A *Hinge point*: point of local maximum curvature.
 - B *Hinge line*: connects hinge points along a given layer.
 - C Axial surface: locus of hinge points in all the folded layers.
 - D *Limb*: surface of low curvature.



11/27/13 GG303 19

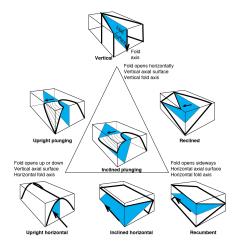
14. Folds

- VI Fold terminology and classification (cont.)
 - D **Cylindrical fold**: a surface swept out by moving a straight line parallel to itself
 - 1 **Fold axis**: line that can generate a cylindrical fold
 - 2 Parallel fold: top and bottom of layers are parallel and layer thickness is preserved*
 - 3 Non-parallel fold: top and bottom of layers are not parallel; layer thickness is not preserved*
 - * Assumption: bottom and top of layer were originally parallel



VI Fold terminology and classification (cont.)

- E Fleuty's Classification
 - 1 Based on orientation of axial surface and fold axis
 - 2 First modifier (e.g., "upright") describes orientation of axial surface
 - 3 Second modifier (e.g., "horizontal") describes orientation of fold axis



11/27/13 GG303 21

14. Folds

Fold terminology and classification (cont.) F Inter-limb angle

Classification
Gentle
Open
Close
Tight
Isoclinal
Mushroom

