10. PRINCIPAL STRAINS

| Main Topics
A Inverses and transposes of rotation matrices
B Principal strains for irrotational deformation
C Principal strains for rotational deformation
D Key points for geologic applications

E Recap
10. PRINCIPAL STRAINS
Il Inverses and transposes D Proof
of rotation matrices X oX' = XeX Vectors in
A The inverses of rotation X’ = RX E:g‘”en‘::;d
matrices [R] are their RXeRX = XeX frames

transposes

B [R]" = [R] [RX]T[RX] =[X]"[X]

C Proof is based on the (XI[RT [RI[X] =[X]"{I1[X]
fact that vectors [RI" [R]=[1]
maintain their length [RIY[R] = [l]
(and the square of [R]™ = [R]

their length) when the
reference frame
rotates
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10. PRINCIPAL STRAINS

[Il Principal strains for irrotational

deformation

A Unit circles deform into
strain ellipses/ellipsoids

B F-matrix is symmetric

C Principal stretch (L¢/L,)
magnitudes are eigenvalues
of F-matrix

D Principal strain (AL/L,)
magnitudes are eigenvalues
of J -matrix

E Principal directions are
eigenvectors of F-matrix

F Principal axes do not rotate
during deformation

Example D from lecture 14

Undeformed (dashed black) and homogenously deformed (solid red) objects

The axes referred to here as “principal
strain axes” should probably be referred to
as “principal elongation axes”
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14. HOMOGENEO

US FINITE STRAIN:

DISPLACEMENT & DEFORMATION GRADIENTS

V  Examples
D Uniaxial shortening

{ f }F[oéiti(gi }{ )V( }

transformations
(matrix form)

Displacement
equations
(matrix form)

G LT

|

>> [vf,df]=eig(F) >> [vju,djul=eig(Ju)

1 0
0 05
Deformation gradient
tensor F

0 0

0 -05
Displacement
gradient tensor J,

vf = vju =
0 1 0 1
1 0 1 0
df = dju =
0.5000 0 -0.5000 0
0 1.0000 0 0
10/24/12 GG

Principal stretch (L¢/L,) magnitudes
are eigenvalues of F-matrix
Principal strain (AL/L,) magnitudes
are eigenvalues of J -matrix
€=S-1

303 4
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14. HOMOGENEOUS FINITE STRAIN:
DISPLACEMENT & DEFORMATION GRADIENTS

V  Examples
F  Pure shear strain
(biaxial strain, no dilation

N
| D) v = >
“l : . \
osf Y
S S 5
oafly i 0 o
, A N
o /

>> [vf,df]=eig(F) >> [vj;J,dju]=eig(Ju)

vf = vju =
0 1 0 1
1 0 10
df = dju =
0.5000 0 -0.5000 0
0 2.0000 O 1.0000
10/24/12

X | |12 0 x
y | |oos5 | »
Position

transformations
(matrix form)

|

A H

Displacement
equations
(matrix form)

2 0
[ 0 05 }
Deformation gradient
tensor F

s ]

Displacement
gradient tensor J,

Principal stretch (L¢/L,) magnitudes
are eigenvalues of F-matrix

Principal strain (AL/L,) magnitudes
are eigenvalues of J -matrix

€=S5-1

GG303

14. HOMOGENEOUS FINITE STRAIN:
DISPLACEMENT & DEFORMATION GRADIENTS

Initial (dashed) and Final (solic) Objects Under Homogeneous Deformation
2

>> [vf,df]=eig(F) >> [vju,djul=eig(Ju)

vf = vju =
-0.7071 0.7071 -0.7071 0.7071
0.7071 0.7071 0.7071 0.7071
df = dju =
1 0 0 0
0 2 0 1
10/24/12

X _| 15 05 x
Y 05 15 | »
Position

transformations
(matrix form)

|

u |_| 05 05 | «x
v 05 05 y
Displacement

equations
(matrix form)

1.5 05

05 15
Deformation gradient

tensor F

05 05
05 05

Displacement
gradient tensor J,

Principal stretch (L¢/L,) magnitudes
are eigenvalues of F-matrix

Principal strain (AL/L,) magnitudes
are eigenvalues of J -matrix

€=S5-1

GG303
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10. PRINCIPAL STRAINS

V' Principal strains for rotational Principal axes

A [F] transforms unit circle into
strain ellipse

B [F]'transforms strain ellipse
into unit circle

C [FI*also transforms unit Reciprocal
circle into reciprocal strain strain ellipse

deformation 1{
X

ellipse ,/\

D The rotation describes the At

angular difference between EF'1 o

the retro-deformed strain
axes (solid blue) and the axes

of the reciprocal strain ellipse \/

(red in lower row) X"=X X
10/24/12 GG303 7
9. Strain and Eigenvectors
IX Symmetric and non- , ,
symmetric matrices it state OO AN e
B If [F]is not / )
symmetric, then : .1
vectors that F A \
operates on that Init:i:al s:tate Final state
don’t rotate (e.g., a
horizontal vector at  ~— &~
right) are not N0 hovian (v
necessarily the Retro-deformed Principal
strain axes strain axes

longest and shortest

10/24/12



10. PRINCIPAL STRAINS

IV Principal strains for rotational

Undeformed (dashed black) and homogenously deformed (solid red) objects

deformation

A Unit circles deform into
strain ellipses/ellipsoids

B F-matrix is non-symmetric

C Eigenvalues of F-matrixare  __|
directions of lines that do
not rotate (in example to
right, a line parallel to the
x-axis), but they don’t give
the axes of the strain ellipse ==

D Eigenvectors of F-matrix are 0 o '
not perpendicular

E Principal strain axes do | 1 2
rotate during deformation 0 1
10/24/12 GG303 9
10. PRINCIPAL STRAINS
IV Principal strains for
rotational deformation
F How can we convert FIF=C
a hon-symmetric acab]_| @+ abted
matrix F into a b d| ¢ d ab+cd b +d*
symmetric matrix?
G C=FFandB=FF" FFT=B
are symmetric, as are a b | ac |_| d+b ac+bd
cd | b d ac+bd ¢ +d°

sqrt(C) and sqrt(B).

10/24/12 GG303
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9. Strain and Eigenvectors

IX Symmetric and non-
symmetric matrices

C Treatment for non-

symmetric F

1 Start with the 1.2
definition of —L=0
quadratic L,
elongation Q

2 Express using dot X o X’
products XoX =0

3 Clearthe o L
denominator X’QX':(XQX)Q

9. Strain and Eigenvectors

IX Symmetric and non-symmetric X o X = (f(. X)Q
matrices
C Treatment for non-symmetric F [Fx]' [Fx]=[x] [X]0

4 Replace X’ with [FX]
5 Re-arrange both sides —— [X] [F] [FX]=[X]
6 Both sides of this equation
lead off with [X], which —__ T
cannot be a zero vector, so it [F F][X] =0
can be dropped from both
sides to yield an eigenvector "[A][X] = /'L[
equation
7 The eigenvalues of [FTF] are
the principal quadratic
elongations

T

o[x]

[X]
X]"

10/24/12



9. Strain and Eigenvectors

IX Symmetric and non-symmetric matrices
D General Case
1 Since [F'F] is symmetric, the

incipal dratic el ti T -
e erpendiaur Coretens - [FTF[x]=0[X]

2 The principal stretches are the

square roots of the principal Lf L,
quadratic elongations (Q); they 0=—:;85=—"=,0=S§
are the square roots of the L L,

eigenvalues of [FTF]

3 The directions of the principal
guadratic elongations (Q) and

principal stretches (S) are the @ -
same; see Lab 9 lecture, slide 38

4 The axes of principal strain rotate

Unit circle

Strain ellipse “Quadratic

Principal axes rotate

strain ellipse”

9. Strain and Eigenvectors

IX Symmetric and non-symmetric matrices T _
E Special Case: [F] is symmetric I:F F:I[X] - Q[X]
1 [F'F1=[F?] because F=FT

2 The principal stretches (S) again are [ﬁ][x]:Q[x]
the square roots of the principal

quadratic elongations (Q) (i.e., the L L
square roots of the eigenvalues of Q=—2;S=—2\/§=S
[F2]) Lo L

3 The principal stretches (S) also are
the eigenvalues of [F], directly

4  The directions of the principal
stretches (S) are the eigenvectors
of [F], and of [FTF] = [F2 ]! @H

5 The principal axes do not rotate

[FI[X]=S[x]

F is symmetric

AN
/"Quadratic

Unit circle 7 ///’étrain ellipse”

[Strai llipse
\ " Principal axes
do not rotate

10/24/12



10. PRINCIPAL STRAINS

\Y Princjpal strains for. | [F]=[R][V]

rotational deformation Stretch by [U], followed

H Polar decomposition by a rotation [R]
theorem J [F]=[VI[R]
[F] can be decomposed rotation by [R],
into the product of a followed by a stretch
rotation matrix [R] and by [V]
an irrotational
symmetric stretch

matrix ([U] or [V]); this
is stated here without a
proof (see Malvern,
1969, p. 174)

10/24/12 GG303 15

10. PRINCIPAL STRAINS

IV Principal strains for rotational
deformation (cont).

[C] = [FT] [F] = [RU]"[RU] [B] = [F] [FT] = [VR] [VR]"
[C1=[UT] [RT] [R] [V] [B] = [V] [R] [R]" [V]"
[Cl=[uT[][U] [B]=[VI[I] [V]T

[C] = [U] [U]=[V?] [B] = [V] [V]=[V?]

[U] = [C]*(1/2) [V] = [B] A(1/2)

10/24/12 GG303 16
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10. PRINCIPAL STRAINS

IV Principal strains for rotational deformation (cont).

10/24/12

GG303

Since F = RU, the rotation is then found asR=FU 1, or
since F=VR,R=V-1IF

Unit eigenvectors of C match unit eigenvectors of U
(see wikiuniversity)

Unit eigenvectors of B match unit eigenvectors of V
(see wikiuniversity)

Square roots of eigenvalues of C give the stretch of the
axes described by U (see wikiuniversity)

Square roots of eigenvalues of B give the stretch of the
axes described by V (see wikiuniversity)

17

10. PRINCIPAL STRAINS

V  Examples

G Simple shear strain

10/24/12

>>F=[12;01]

1 2
0 1
>> C=F'*F

>> [vc,dc]=eig(C)
Ve =

-0.9239 0.3827
0.3827 0.9239
dc =

0.1716 0

0 5.8284
>> [vb,db]=eig(B)
vb =

0.3827 -0.9239
-0.9239 -0.3827
db =

0.1716 0

0 5.8284

18
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10. PRINCIPAL STRAINS

Example with vr_decomp
F=VR

Untcicle, stin elipse, & selected dsplacements

s 15

St eipse, igenvectors(blue), prncipalaxes )

05 ) - 05 7
o &£ 0 /

05 05 -
- < -1

s s

V=sqrtm(F*F’)
Eigenvectors of [V] (red, upper right) give
directions of axes of strain ellipse.
Eigenvectors of [V-1] (red, lower right) give
directions of axes of reciprocal strain ellipse.
10/24/12 GG303

>>[V,R,eigvecV,eigvalV,eigvecFeigvalF,eigvecV_] =
vr_decomp([2,1;0,1]);
Deformation gradient matrix [F] = [V][R]
2 1
0 1
Symmetric component [V]
2.2136 0.3162
0.3162 0.9487
Rotation matrix [R]
0.9487 0.3162
-0.3162 0.9487
Eigenvalues of [V]
2.2882 0
0 0.8740
Eigenvectors of [V] (in columns)
0.9732 -0.2298
0.2298 0.9732
Eigenvalues of inverse of [V]
2.2882 0
0 0.8740
Eigenvectors of inverse of [V]
0.9732 -0.2298
0.2298 0.9732 19

10. PRINCIPAL STRAINS

Example with vr_decomp
F=VR

Untcicle, strin elipse, & selected dsplacements

s 15

St elipse, igenvectors(blue), prncipal axes ()

.
s . i : 0s
0 0
sk > 05
af = E

15 s

Unitcile recipocal trin eipse, & elected dislacements esired)

V=sqrtm(F*F’)

Eigenvectors of [V] (red, upper right) give
directions of axes of strain ellipse.
Eigenvectors of [V1] (red, lower right) give
directions of axes of reciprocal strain ellipse.

10/24/12 GG303

>>[V,R,eigvecV,eigvalV,eigvecF eigvalF,eigvecV_] =
vr_decomp([2,1;0,1]);
Deformation gradient matrix [F] = [V][R]
2 1
0 1
Symmetric component [V]
2.2136 0.3162
0.3162 0.9487
Rotation matrix [R]
0.9487 0.3162
-0.3162 0.9487
Eigenvalues of [F]
2 0
0 1
Eigenvectors of [F] (in columns)
1.0000 -0.7071
0 0.7071
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10. PRINCIPAL STRAINS

V  Key points for geologic
applications P
A Here we know the [F] and [J ] X {
matrices; in nature we usually :
don’t . .
B Here we know the initial and T
final positions of points; in
nature we usually don’t Reciprocal
C To apply finite strain theory to  strain ellipse

Principal axes

rocks, we make assumptions ,/\

about initial shapes and/or
positions at a point.

D Important to know these
assumptions

E Inaforward model, we know \/

the conditions/assumptions X=X N

10/24/12 GG303

21

10. PRINCIPAL STRAINS

V Key points for geologic

applications T

F In infinitesimal strain X {
theory, the strain matrix
(see Lecture 15, slide 11) is
symmetric, the eigenvalues T
give the maximum and
minimum extensions, and Reciprocal

Principal axes

the eigenvalues give the strain ellipse
directions of the axes of the A/\ .

strain ellipse (and the
reciprocal strain ellipse).

G Valid if displacement
derivatives << 1.

10/24/12 GG303

22
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10. PRINCIPAL STRAINS

VI Recap Principal axes

A Strain deals with X" 1{
changes in the size ='
and/or shape of bodies
or pieces of bodies

Reciprocal

B The size/shape changes (33
are manifest in changes O~
in the lengths of line LSV
segments and the
angles between line

segments
X=X
10/24/12 GG303 23
10. PRINCIPAL STRAINS
VI Recap Principal axes
C Strain is defined at a XW h :
point using 1

dimensionless derivatives
but in practice is T
measured over finite Reciprocal
regions (volumes) strain ellipse

D If the displacement A/\ ..... 3
derivatives with respect Y AT
to position are small,
infinitesimal strain
theory can be applied

10/24/12 GG303 24
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10. PRINCIPAL STRAINS

VI Recap

E

10/24/12

The deformation gradient
matrix [F] relates initial
position vectors to final
position vectors

The displacement gradient
matrix [J ] relates initial
position vectors to
displacement vectors

[F] and [J ] are easily
related

At a point, [F]and [J ]
contain constants, so the
components of [dX'] and
[U] are linearly related to
the components of [dX]

GG303

[ax"]=[F][X]

ox’ ox’
x| dx dy dx
ay | ay 9y dy
dx dy
(U]=[v.][ax]
o
du | | 9x Oy dx
av | 521: j?}i dy
dx dy

[U]=[ax"]-[ax]=[F][ax]-[1][aX]

[‘lu]:[F]_[I]

10. PRINCIPAL STRAINS

VI Recap

10/24/12

If the [F] matrix is symmetric,
then orthogonal vectors [dX]
can be found that do not
rotate when operated on by
[F], so [F][dX] = A[dX] . Those
vectors are called
eigenvectors and they give
the directions of the principal
stretches at a point (S = Li/L,)
The stretches (A) of these
eigenvectors are called
eigenvalues. They provide
maximum and minimum
stretches.

GG303

[ax’]=[F][dX]
[FllaX]=A[dX]

Irrotational Strain
Inigi_al state Final state

fr=1

=1 %

Note: The principal stretch
directions are not always
“horizontal and “vertical”.

26
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10. PRINCIPAL STRAINS

VIRecap [FTF][dX]:Q[dX]
K Even if [F] is not
symmetric, [FT][F] is. S=A= \/E
L The principal stretches atsate 020N e
at a point can be found 7 7 )
by taking the square (

roots of the principal
guadratic strains (i.e.,
the square roots of the
eigenvalues of [FT][F])

10/24/12 GG303 27

10. PRINCIPAL STRAINS

Rotational Strai
VI Recap Initial state otational Strain Final state

M The symmetric stretch
matrix [V]=[FFT]”2

N The rotation matrix [R]
describes the difference
in orientation
[R]=[V"][F]

O If [F] is symmetric, then
VI=[F], VA1 =[5 and - [y (F)= (v v][R]=[R]
[R] = [F] [F]=I] =l

10/24/12 GG303 28
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10. PRINCIPAL STRAINS

VIRecap
P The symmetric stretch
matrix [U]= [FTF]”2
Q The rotation matrix [R]

describes the difference
in orientation

[R]=[F][U"']

R If [F] is symmetric, then
[U]=[F], [U*] = [F], and
[RI=[FI[F] =11

10/24/12 GG303

Rotational Strain .
Initial state Final state

/)
L/

Initial state Final state

Retro-deformed Principal
strain axes strain axes

[Fl=[R][V]
[FI[v™ ]=[RIU][v™ ]=[R]

29

10. PRINCIPAL STRAINS

VI Recap
S The stress matrix, by Cauchy’s
formula, converts the normal
vector to a plane to the traction
vector acting on the plane.

T This transformation has the form

[Al[X] = A[X]

U The stress matrix is symmetric, so
its eigenvalues are the principal
stresses, and its eigenvalues are
the principal values

V The principal stress directions
can be used to predict the sense
of slip on faults and the
orientation of dikes and joints
(normal to the most tensile
stress)

10/24/12 GG303

7,=n0,=0,n,=[t]|=[0][n]

The components of a vector
come from projecting the

vector onto the coordinate axes
30
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