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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
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Homogenous 

deformaEon 

deforms a 
unit circle to 

a “strain 

ellipse”

Objective: To 

quantify the 

size, shape, 
and orientation 

of strain ellipse 

using its axes



9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

I Main Topics 
A Equa>ons for ellipses
B Rota>ons in homogeneous deforma>on
C Eigenvectors and eigenvalues
D Solu>ons for general homogeneous 

deforma>on matrices
E Key results
F Appendices (1, 2, 3,4)
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II Equa7ons of ellipses

A Equa7on of a unit circle 
centered at the origin

1

2

3

4

x2 + y2 = 1

x  y[ ] 1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

X[ ]T F[ ] X[ ]= 1

x  y[ ] x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= x  y[ ] 1x + 0y

0x +1y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

Symmetric

Here, [F] is the identity matrix [I].
So position vectors that define a 
unit circle transform to those 
same position vectors because
[X’] = [F][X].
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II Equations of ellipses

B Equation of an ellipse 
centered at the origin 
with its axes along the 
x- and y- axes

1

2

3

4

ax2 + 0xy + dy2 = 1

x  y[ ] a 0
0 d

⎡

⎣
⎢

⎤

⎦
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

X[ ]T F[ ] X[ ]= 1

x  y[ ] ax + 0y
0x + dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

Symmetric

Position vectors that define a 

unit circle transform to position 

vectors that define an ellipse 

because [X’] = [F][X].
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II Equations of ellipses
C “Symmetric” equation 

of an ellipse centered 
at the origin

1

2

3

4

ax2 + 2bxy + dy2 = 1

x  y[ ] a b
b d

⎡

⎣
⎢

⎤

⎦
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

X[ ]T F[ ] X[ ]= 1

x  y[ ] ax + by
bx + dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

Symmetric

Displacement vectors are in 
black. Blue numbers are 
final axial lengths. Red 
numbers are iniSal radii.  
Displacement vectors are 
symmetric about axes of 
ellipse.

Example : F = 2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥

7GG30310/23/19
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II Equations of ellipses
D General equation of an 

ellipse centered at the 
origin

1

2

3

4

ax2 + b + c( )xy + dy2 = 1

x  y[ ] a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

X[ ]T F[ ] X[ ]= 1

x  y[ ] ax + by
cx + dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

Not symmetric if 
b≠c

Example : F = 2 1
0 2

⎡

⎣
⎢

⎤

⎦
⎥

8GG30310/23/19

Vectors along axes of ellipse transform back 
to perpendicular vectors along axes of unit 
circle
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A Let [X] be the set of all 
position vectors that define a 
unit circle

B Let [X’] be the set of all 
position vectors that define 
an ellipse described by a 
homogenous deformation at 
a point

C [X’] = [F][X] (Forward def.)
D [X] = [F-1][X’] (Reverse def.)
E The matrices [F] and [F-1] 

contain constants

10/23/19 GG303 9

III RotaWons in homogenous deformaWon
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F The differential tangent vectors 
[dX’] and [dX] come from 
differentiating [X’] = [F][X] and 
[X] = [F-1][X’] , respectively.

G [dX’] = [F][dX] (Forward def.)
H [dX] = [F-1][dX’] (Reverse def.)
I [F] transforms [X] to [X’], and 

[dX] to [dX’] 
J [F-1] transforms [X’] to [X], and 

[dX’] to [dX]
K Position vectors are paired to 

corresponding tangents  

10/23/19 GG303 10

III Rotations in homogenous deformation (cont.)  
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L Where a non-zero posi@on 
vector and its tangent are 
perpendicular, the posi@on 
vector achieves its greatest 
and smallest (squared) 
lengths, as shown below 

M 
N Maxima and minima of 

(squared) lengths occur 
where dQ’ = 0

O
P

10/23/19 GG303 11

III Rotations in homogenous deformation (cont.)  

′Q = ′
!
X • ′
!
X = ′X[ ]T ′X[ ]

d ′Q = d ′
!
X • ′
!
X( ) = ′

!
X • d ′

!
X + d ′

!
X • ′
!
X = 0

2 ′
!
X • d ′

!
X( ) = 0⇒ ′

!
X • d ′

!
X( ) = 0
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Q The tangent vector 

perpendicular to the 

longest position vector 

parallels the shortest 

position vector (which lies 

along the semi-minor axis), 

and vice-versa.

R Similar reasoning applies 

to the corresponding unit 

circle.

10/23/19 GG303 12

III Rotations in homogenous deformation (cont.)  



9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

S For the unit circle, all initial 
position vectors are radial 
vectors, and each initial 
tangent vector is 
perpendicular to the 
associated radial position 
vector.  The red initial 
vector pair [X*, dX*] and 
the blue initial vector pair 
[X*, dX*] both show this.

10/23/19 GG303 13

III RotaOons in homogenous deformaOon (cont.)  
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T All the final position-tangent vector pairs for the 
ellipse have corresponding initial position-tangent 
vector pairs for the unit circle (and vice-versa).  

U Every position-tangent vector pair for the unit circle 
contains perpendicular vectors.  

V Only the position-tangent vector pair for the ellipse 
that parallel the major and minor axes (i.e., the red 
pair [X*’, dX*’]) are perpendicular.  

W “Retro-transforming” [X*’, dX*’] by [F-1] yields the 
initial red pair of perpendicular vectors [X*, dX*].  

X Conversely, the forward transformation of the red 
pair of initial perpendicular vectors [X*, dX*] using 
[F] yields the final perpendicular vectors pair [X*’, 
dX*’].  

Y The transformation from  [X*, dX*] to [X*’, dX*’] 
involves a rotation, and that is how the rotation is 
defined.

10/23/19 GG303 14

III Rotations in homogenous deformation (cont.)  
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• The longest (X1’) and shortest (X2’) 
posiHon vectors of the ellipse are 
perpendicular, along the red axes of 
the ellipse, and parallel the tangents.

• The corresponding retro-transformed 
vectors ([X1] = [F]-1[X1’], and  [X2] = [F]-
1[X2’]) (along the black axes) are 
perpendicular unit vectors that 
maintain the 90° angle between the 
principal direcHons.  

• The angle of rotaHon is defined as the 
angle between the perpendicular pair 
{X1 and X2} along the black axes of the 
unit circle and the perpendicular 
principal pair {X1’, X2’} along the red 
axes of the ellipse. 

• These results extend to three 
dimensions if all three secHons along 
the principal axes of the “strain” 
(stretch) ellipsoid are considered.

• See Appendix 4 for more examples.

15GG30310/23/19

III Rotations in homogenous deformation (cont.)  
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IV Eigenvectors and eigenvalues
(used to obtain stretches and rotations)
A The eigenvalue matrix equation [A][X] = λ[X]

1 [A] is a (known) square matrix (nxn)
2 [X] is a non-zero directional eigenvector (nx1)

3 λ is a number, an eigenvalue

4 λ[X] is a vector (nx1) parallel to [X]
5 [A][X] is a vector (nx1) parallel to [X]

16GG30310/23/19
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A The eigenvalue matrix equaBon [A][X] = λ[X] 
(cont.)
6 The vectors [[A][X]], λ[X], and [X] share the 

same direcBon if [X] is an eigenvector
7 If [X] is a unit vector, λ is the length of [A][X]
8 Eigenvectors [Xi] have corresponding 

eigenvalues [λi], and vice-versa 
9 In Matlab, [vec,val] = eig(A), finds 

eigenvectors (vec) and eigenvalues (val)

17GG30310/23/19
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IV Eigenvectors and eigenvalues
B Example: MathemaIcal meaning of [A][X]=λ[X]

A = 2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥

A − 2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2 1

1 2
⎡

⎣
⎢

⎤

⎦
⎥

− 2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= − 2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 − 2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Two eigenvectors

Two eigenvalues

A 2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2 1

1 2
⎡

⎣
⎢

⎤

⎦
⎥

2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 3 2

3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 3 2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

18GG30310/23/19
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X ' = FX

F = 2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥

• Eigenvectors of symmetric F give 
directions of the principal 
stretches

• Eigenvalues of symmetric F         
(i.e., λ1, λ2) are magnitudes of the 
principal stretches S1 and S2

Af

A0
= πλ1λ2

πr2
= λ1
r
λ2
r
= S1S2

Δ =
Af − A0
A0

=
Af

A0
− A0
A0

= S1S2 −1

r = 1
λ1 = 3
λ2 = 1

IV Eigenvectors and eigenvalues
C Example: Geometric meaning 

of [A][X]=λ[X]

19GG30310/23/19

Unit circle
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IV Eigenvectors and eigenvalues

D Example: Matlab solution 
of [A][X]=λ[X]

A = 2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥

Eigenvalues (λ)

20GG30310/23/19

Angle between x-axis 
and largest eigenvector 

Angle between x-axis 
And smallest eigenvector

* Matlab in 2016 does not order eigenvalues from largest to smallest

>> A = [2 1; 1 2]
A =

2     1
1     2

>> [vec,val] = eig(A)
vec =

-0.7071    0.7071
0.7071    0.7071

val =
1     0
0     3

>> theta1 = atan2(vec(2,2),vec(2,1))*180/pi
theta1 =

45
>> theta2 = atan2(vec(1,2),vec(1,1))*180/pi
theta2 =

135
Δ = det A[ ]−1
Here, Δ = 3−1= 2

λ1 = 3
λ2 = 1

Eigenvectors [X] given by 
their direcaon cosines

Eigenvector/eigenvalue
pairs
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IV Eigenvectors and eigenvalues (cont.)
E Geometric meanings of the real 

matrix equaIon [A][X] = [B] = 0
1 |A| ≠ 0 ; 

a [A]-1 exists
b Describes two lines (or 3 

planes) that intersect at the 
origin

c X has a unique soluIon
2 |A| = 0 ;

a [A]-1 does not exist
b Describes two co-linear lines 

that that pass through the 
origin (or three planes that 
intersect in a line or in a 
plane through the origin) 

c [X] has no unique soluIon; 
can have mulIple soluIons

n1 n2

n1

n2
Det[A] = area (volume) defined by 
parallelogram (parallelepiped) based 
on unit normals

21GG30310/23/19
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IV Eigenvectors and eigenvalues (cont.)
D AlternaDve form of an eigenvalue equaDon 

1 [A][X]=λ[X]
SubtracDng Iλ[X] = λ[IX] = λ[X] from both sides yields: 
2 [A-Iλ][X]=0 (same form as [A][X]=0)

E SoluDon condiDons and connecDons with determinants 
1 Unique trivial soluDon of [X] = 0 if and only if |A-Iλ|≠0
2 MulDple eigenvector soluDons ([X] ≠ 0) 

if and only if |A-Iλ|=0
* See previous slide

22GG30310/23/19
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IV Eigenvectors and eigenvalues (cont.)

F Characteristic equation: |A-Iλ|=0 

1 The roots of the characteristic equation are the 

eigenvalues (λ) 

23GG30310/23/19
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IV Eigenvectors and eigenvalues (cont.)

F Characteristic equation: |A-Iλ|=0 (cont.) 

2 Eigenvalues of a general 2x2 matrix

a

b

c

d

A − Iλ = a − λ b
c d − λ

= 0

a − λ( ) d − λ( )− bc = 0

λ 2 − a + d( )λ + ad − bc( ) = 0

λ1,λ2 =
a + d( )± a + d( )2 − 4 ad − bc( )

2

(a+d) = tr(A)

(ad-bc) = |A|

A = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

λ1 + λ2 = tr A( )
λ1λ2 = A

24GG30310/23/19
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IV Eigenvectors and eigenvalues (cont.)

G To solve for eigenvectors, subsFtute eigenvalues
back into AX= lX and solve for X (see Appendix 1)

H Eigenvectors of real symmetric matrices are 
perpendicular (for disFnct eigenvalues);  see 
Appendix 3

* All these points are important

25GG30310/23/19
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IV Solutions for general 
homogeneous deformation 
matrices
A Eigenvalues

1 Start with the 
definition of 
quadratic elongation 
Q, which is a scalar

2 Express using dot 
products

3 Clear the 
denominator.  Dot 
products and Q are 
scalars.

!
′X •
!
′X!

X •
!
X

=Q

!
′X •
!
′X =
!
X •
!
X( )Q

Lf
2

L0
2 =Q

26GG30310/23/19
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IV Solutions for general homogeneous 

deformation matrices
A Eigenvalues

4 Replace X’ with [FX]
5 Re-arrange both sides
6 Both sides of this equation lead 

off with [X]T, which cannot be a 
zero vector, so it can be dropped 
from both sides to yield an 
eigenvector equation

7 [FTF] is symmetric: [FTF]T=[FTF] 
8 The eigenvalues of [FTF] are the 

principal quadratic elongations    
Q = (Lf/L0) 2

9 The eigenvalues of [FTF] 1/2 are the 
principal stretches S = (Lf/L0)

F[ ]
nxn

X[ ]
nx1

⎡
⎣⎢

⎤
⎦⎥

T

F[ ]
nxn

X[ ]
nx1

⎡
⎣⎢

⎤
⎦⎥
= X

nx1
⎡
⎣

⎤
⎦
T

X[ ]
nx1
Q
1x1

X
nx1
⎡
⎣

⎤
⎦
T

F
nxn
⎡
⎣

⎤
⎦
T

F
nxn
X
nx1

⎡
⎣

⎤
⎦ = X

nx1
⎡
⎣

⎤
⎦
T

Q
1x1

X
nx1
⎡
⎣

⎤
⎦

F
nxn

T F
nxn

⎡
⎣

⎤
⎦ X

nx1
⎡
⎣

⎤
⎦ =Q X

nx1
⎡
⎣

⎤
⎦

!
′X •
!
′X =
!
X •
!
X( )Q

" A[ ] X[ ]= λ X[ ]"

27GG30310/23/19
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IV Solutions for general homogeneous 
deformation matrices
B Special Case: [F] is symmetric

1 [FTF] = [F 2 ] because F = FT

2 The principal stretches (S) again are 
the square roots of the principal 
quadratic elongations (Q) (i.e., the 
square roots of the eigenvalues of 
[F 2]) 

3 The principal stretches (S) also are 
the eigenvalues of [F ], directly

4 The directions of the principal 
stretches (S) are the eigenvectors 
of [F ], and of [FTF] = [F 2 ]! 

5 The axes of the principal (greatest 
and least) strain do not rotate

FTF⎡⎣ ⎤⎦ X[ ]=Q X[ ]

Q =
Lf

2

L0
2 ; S =

Lf

L0
⇒ Q = S

F2⎡⎣ ⎤⎦ X[ ]=Q X[ ]

F[ ] X[ ]= S X[ ]

28GG30310/23/19
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F = 2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥

R = 0.89 0.45
−0.45 0.89

⎡

⎣
⎢

⎤

⎦
⎥

′X[ ]= F[ ] X[ ]; F[ ]= R[ ] U[ ]

F[ ]= 2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥; F[ ]T = 2 0.5

2 1
⎡

⎣
⎢

⎤

⎦
⎥

U[ ]= F[ ]T F[ ]⎡⎣ ⎤⎦
1/2

= 4.25 4.5
4.5 5

⎡

⎣
⎢

⎤

⎦
⎥

1/2

= 1.56 1.34
1.34 1.79

⎡

⎣
⎢

⎤

⎦
⎥

R[ ]= F[ ] U[ ]−1 = 2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥

1.79 −1.34
−1.34 1.56

⎡

⎣
⎢

⎤

⎦
⎥ =

0.89 0.45
−0.45 0.89

⎡

⎣
⎢

⎤

⎦
⎥

U[ ]= 1.56 1.34
1.34 1.79

⎡

⎣
⎢

⎤

⎦
⎥

First, 
symmetrically 
stretch the unit 
circle using [U]

Second, rotate 
the ellipse (not 
the reference 
frame) using [R]

[F] = [R][U]

F[ ] X[ ]

U[ ] X[ ]

X[ ]

X[ ]
U[ ] X[ ]

R[ ] U[ ] X[ ]

Example 1 Eigenvalues of [U] 
give principal 
stretch magnitudes

Eigenvectors of
[U] are along axes of 
blue ellipses. Rotated
eigenvectors of
[U] give principal stretch 
directions

29GG30310/23/19

By the polar decomposition
theorem, F can be formed by 
a stretch and a rotation
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′X[ ]= F[ ] X[ ]; F[ ]= V[ ] R[ ]

F[ ]= 2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥; F[ ]T = 2 0.5

2 1
⎡

⎣
⎢

⎤

⎦
⎥

V[ ]= F[ ] F[ ]T⎡⎣ ⎤⎦
1/2

= 8 3
3 1.5

⎡

⎣
⎢

⎤

⎦
⎥

1/2

= 2.68 0.89
0.89 0.67

⎡

⎣
⎢

⎤

⎦
⎥

R[ ]= V[ ]−1 F[ ]= 0.67 −0.89
−0.89 2.68

⎡

⎣
⎢

⎤

⎦
⎥

2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥ =

0.89 0.45
−0.45 0.89

⎡

⎣
⎢

⎤

⎦
⎥

First, rotate the 
unit circle using 
[R]

Second, stretch 
the rotated unit 
circle 
symmetrically 
using [V]

[F] = [V] [R]

R = 0.89 0.45
−0.45 0.89

⎡

⎣
⎢

⎤

⎦
⎥

F = 2 2
0.5 1

⎡

⎣
⎢

⎤

⎦
⎥

V[ ]= 2.68 0.89
0.89 0.67

⎡

⎣
⎢

⎤

⎦
⎥

F[ ] X[ ] X[ ]

X[ ]R[ ] X[ ] R[ ] X[ ]V[ ] R[ ] X[ ]

Example 2 Eigenvalues of [V] 
also give principal 
stretch magnitudes

Unrotated
eigenvectors of 
[V] give principal 
stretch directions 
directly

30GG30310/23/19

F also can be formed by 
a rotaQon and a stretch
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VI Key results
A For symmetric F matrices (F = FT)

1 Eigenvectors of F give directions of principal stretches
2 Eigenvectors of F are perpendicular
3 Eigenvalues of F give magnitudes of principal stretches
4 Eigenvectors do not rotate

B For non-symmetric F matrices (F ≠ FT)
1 The directions of the principal stretches are given by rotated eigenvectors of [FTF]
2 Eigenvectors of [FTF] are perpendicular; eigenvectors of F are not
3 Eigenvalues of [FTF] give magnitudes of principal quadratic elongations
4 F can be decomposed into a symmetric stretch and rotation (or vice-versa)

a The stretch matrix U =[FTF]1/2 

b The stretch matrix V =[FFT]1/2 

5 The rotation matrix R = F[FTF]1/2 = [FFT]1/2 F
C Need to know initial locations and final locations, or F, to calculate strains
D The F-matrix does not uniquely determine the displacement history: e.g.,  F=RU=VR

33GG30310/23/19



Appendix 1

Examples of long-hand solutions for 
eigenvalues and eigenvectors

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
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Characteristic equation: |A-Iλ|=0
Eigenvalues for symmetric [A]

a

b
c

d

e

A − Iλ = a − λ b
c d − λ

= 2 − λ 1
1 2 − λ

= 0

a − λ( ) d − λ( )− bc = 2 − λ( ) 2 − λ( )− 1( ) 1( ) = 0
λ 2 − a + d( )λ + ad − bc( ) = 0

λ1,λ2 =
a + d( )± a + d( )2 − 4 ad − bc( )

2

=
2 + 2( )± 2 + 2( )2 − 4 2 × 2 −1×1( )

2
= 2 ±1

tr(A) = (a+d) = 4
|A|=(ad-bc) = 3

A = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥ =

2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥

tr A( ) = λ1 + λ2 = 4
A = λ1λ2 = 3

35GG30310/23/19

λ1 = 3, λ2 = 1



9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Eigenvalue equa=on: AX=λX

Eigenvectors for symmetric [A]

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ1

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ 2 1

1 2
⎡

⎣
⎢

⎤

⎦
⎥

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2α1 + β1
α1 + 2β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 3

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ β1 =α1

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ2

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ 2 1

1 2
⎡

⎣
⎢

⎤

⎦
⎥

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2α 2 + β2
α 2 + 2β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ β2 = −α 2

A = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥ =

2 1
1 2

⎡

⎣
⎢

⎤

⎦
⎥
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θ1 = tan
−1 β1
α1

= tan−1α1

α1

= tan−1 1
1
= 45!

θ2 = tan
−1 β2
α 2

= tan−1 −α 2

α 2

= tan−1 −1
1

= −45!

Angle for
eigenvector 1

Angle for
eigenvector 2

λ1

λ2

Direc=on cosines of first eigenvector

Direction cosines of first eigenvector
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Characteris<c equa<on: |A-Iλ|=0
Eigenvalues for non-symmetric [A]

a

b
c

d

e

A − Iλ = a − λ b
c d − λ

= 2 − λ 0
1 2 − λ

= 0

a − λ( ) d − λ( )− bc = 2 − λ( ) 2 − λ( )− 0( ) 1( ) = 0
λ 2 − a + d( )λ + ad − bc( ) = 0

λ1,λ2 =
a + d( )± a + d( )2 − 4 ad − bc( )

2

=
2 + 2( )± 2 + 2( )2 − 4 2 × 2 − 0 ×1( )

2
= 2 ± 0

tr(A) = (a+d) = 4
|A|=(ad-bc) = 4

A = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥ =

2 0
1 2

⎡

⎣
⎢

⎤

⎦
⎥

tr A( ) = λ1 + λ2 = 4
A = λ1λ2 = 4

37GG30310/23/19
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Eigenvalue equation: AX=λX

Eigenvectors for non-symmetric [A]

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ1

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ 2 0

1 2
⎡

⎣
⎢

⎤

⎦
⎥

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2α1

α1 + 2β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2

α1

β1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒α1 = 0

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ2

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒ 2 0

1 2
⎡

⎣
⎢

⎤

⎦
⎥

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2α 2

α 2 + 2β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2

α 2

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒α 2 = 0

A = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥ =

2 0
1 2

⎡

⎣
⎢

⎤

⎦
⎥
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θ1 = tan
−1 β1
α1

= tan−1 β1
0
= tan−1∞ = ±90!

θ2 = tan
−1 β2
α 2

= tan−1 β2
0

= tan−1∞ = ±90!

Angle for
eigenvector 1

Angle for
eigenvector 2

λ1

λ2



Appendix 2

Proof that the vectors λX are the 
longest and shortest vectors from the 

center of an ellipse to its perimeter

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
VI Eigenvectors of a symmetric matrix

A Maximum and minimum squared 
lengths 
Set derivaIve of squared lengths 
to zero to find orientaIon of 
maxima and minimum distance 
from origin to ellipse  

B PosiIon vectors (X’) with 
maximum and minimum 
(squared) lengths are those that 
are perpendicular to tangent 
vectors (dX’) along ellipse

!
′X •
!
′X = Lf

2

d
!
′X •
!
′X( )

dθ
=
!
′X • d
!
′X

dθ
+ d
!
′X

dθ
•
!
′X = 0

2
!
′X • d
!
′X

dθ
⎛
⎝⎜

⎞
⎠⎟
= 0

!
′X • d
!
′X

dθ
⎛
⎝⎜

⎞
⎠⎟
= 0
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VI Eigenvectors of a 
symmetric matrix
C AX=λX
D Since eigenvectors X of 

symmetric matrices are 
mutually perpendicular, 
so too are the 
transformed vectors λX

E At the point idenJfied 
by the transformed 
vector λX, the 
perpendicular 
eigenvector(s) must 
parallel dX’ and be 
tangent to the ellipse
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VI Eigenvectors of a symmetric 
matrix
F Recall that position vectors 

(X’) with maximum and 
minimum (squared) lengths 
are those that are 
perpendicular to tangent 
vectors (dX’) along ellipse.  
Hence, the smallest and 
largest transformed vectors 
λX give the minimum and 
maximum distances to an 
ellipse from its center.

G The λ values are the 
principal stretches

H These conclusions extend to 
three dimensions and 
ellipsoids
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Appendix 3

Proof that distinct eigenvectors of a 
real symmetric matrix A=AT are 

perpendicular

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
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1a AX1 =λ1X1 1b AX2 =λ2X2

Eigenvectors X1 and X2 parallel AX1 and AX2, respecHvely
DoJng AX1 by X2 and AX2 by X1 can test whether X1 and 

X2 are orthogonal. 
2a X2•AX1 = X2•λ1X1 = λ1 (X2•X1)
2b X1•AX2 = X1•λ2X2 = λ2 (X1•X2)
If A=AT, then the leQ sides of (2a) and (2b) are equal:
3 X2•AX1 = AX1•X2 = [AX1] T[X2] = [[X1] T[A] T ][X2]

= [X1] T[A] [X2] = [X1] T[[A] [X2]] = X1•AX2
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Since the left sides of (2a) and (2b) are equal, the right 
sides must be equal too. Hence,

4 λ1 (X2•X1) =λ2 (X1•X2)

Now subtract the right side of (4) from the left

5 (λ1 – λ2)(X2•X1) =0

• The eigenvalues generally are different, so λ1 – λ2 ≠ 0. 

• For (5) to hold, then X2•X1 =0.

• Therefore, the eigenvectors (X1, X2) of a real symmetric 2x2 
matrix are perpendicular where eigenvalues are distinct

• The eigenvectors can be chosen to be perpendicular if the 
eigenvactors are the same
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Appendix 4

Rotations in homogenous deformation:
An algebraic perspective

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
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VI Rota7ons in homogeneous deforma7on

A Just geDng the size and shape of the 
“strain” (stretch) ellipse is not 
enough if [F] is not symmetric.  Need 
to consider how points on the ellipse 
transform

B Can do this through a combina7on of 
stretches and rota7ons
1 F=VR (which “R”?)

a V = symmetric stretch matrix
b R = rota7on matrix

2 F=RU (which “U”?  “R”?)
a R = rota7on matrix
b U = symmetric stretch matrix

3 The choices become unique for 
symmetric stretch matrices
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VI Rotations in homogeneous 

deformation
C If an ellipse is transformed to 

a unit circle, the axes of the 
ellipse are transformed too. 

D In general, the axes of the 
ellipses do not maintain their 
orientation when the ellipse is 
transformed back to a unit 
circle

E If F is not symmetric, the axes 
of the red ellipse and the 
retro-deformed (black) axes 
will have a different absolute 
orientation

F The transformation from the 
the retro-deformed (black) 
axes to the the orientation of 
the principal axes gives the 
rotation of the axes.
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VI Rotations in homogeneous 
deformation

G We know how to find the 
principal stretch magnitudes: 
they are the square roots of 
the eigenvalues of the 
symmetric matrix [ [FT][F] ]

H The eigenvectors of [ [FT][F] ] 
give some of the information 
needed to find the direction 
of the principal stretch axes.  
The rotation describes the 
orientation difference 
between the (red) principal 
strain (stretch) axes and their 
(black) retro-deformed 
counterparts
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VI Rotations in homogeneous 
deformation

I To find the rotation of the 
principal axes, start with 
the parametric equation for 
an ellipse and its tangent, 
and the requirement that 
the position vectors for the 
semi-axes of the ellipse are 
perpendicular to the 
tangent

Let θ give the orientation of X, 
where X transforms to X’.
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!
′X = acosθ + bsinθ( )

!
i + ccosθ + d sinθ( )

!
j

d ′
!
X
dθ

= −asinθ + bcosθ( )
!
i + −csinθ + d cosθ( )

!
j

′
!
X • d ′

!
X
dθ

= 0
What value of θ will yield a vector X
such that X’ will be perpendicular
to the tangent of the ellipse?

X is a position 
vector for a unit 
circle.  [X’] = [F][X].
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VI Rota7ons in homogeneous 
deforma7on

Now solve for θ sa7sfying 
X’•dX’/dθ = 0
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!
′X = acosθ + bsinθ( )

!
i + ccosθ + d sinθ( )

!
j

d ′
!
X
dθ

= −asinθ + bcosθ( )
!
i + −csinθ + d cosθ( )

!
j

′
!
X • d ′

!
X
dθ

= 0

= −a2 sinθ cosθ + abcos2θ − absin2θ + b2 sinθ cosθ
− c2 sinθ cosθ + cd cos2θ − cd sin2θ + d 2 sinθ cosθ

= − a2 − b2 + c2 − d 2( )sinθ cosθ + ab + cd( )cos2θ − ab + cd( )sin2θ
= − a2 − b2 + c2 − d 2( )sinθ cosθ + ab + cd( ) cos2θ − sin2θ( )
=
− a2 − b2 + c2 − d 2( )

2
sin2θ + ab + cd( )cos2θ

=
a2 − b2 + c2 − d 2( )

2
sin −2θ( )+ ab + cd( )cos −2θ( ) = 0
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VI Rota7ons in homogeneous 
deforma7on (Cont.)

10/23/19 GG303 52

a2 − b2 + c2 − d 2( )
2

sin −2θ( )+ ab + cd( )cos −2θ( ) = 0

tan −2θ( ) = −2 ab + cd( )
a2 − b2 + c2 − d 2

θ1 =
1
2
tan−1 2 ab + cd( )

a2 − b2 + c2 − d 2
⎛
⎝⎜

⎞
⎠⎟
, θ2 =

1
2
tan−1 2 ab + cd( )

a2 − b2 + c2 − d 2
⎛
⎝⎜

⎞
⎠⎟
± 90!

Recall that two angles
that differ by 180° have 
the same tangent

So θ1 and θ2 are 90° apart.  So X1 and X2 that transform 
to X1’ and X2’ are perpendicular.


