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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Homogenous

. Forward
deformation
deforms a ,’/ \«\ Reverse

N

\
\

unit circle to / Rotation .

a “strain \ ~_ \

Forward
ellipse”
\ """"""""" N . Objective: To
¢+ quantify the

/ size, shape,

Reverse and orientation
of strain ellipse
> -7 . .
everse < using its axes
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| Main Topics
A Equations for ellipses
B Rotations in homogeneous deformation
C Eigenvectors and eigenvalues

D Solutions for general homogeneous
deformation matrices

E Key results
F Appendices (1, 2, 3,4)
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Il Equations of ellipses

A Equation of a unit circle y
centered at the origin
1 x*+y =1 X
X i 1x+()y |
2 x vl U=l Yl =1
y Ox+1y
[ ] 1 O x | | Here, [F] is the identity matrix [l].
rY 0 1 y | So position vectors that define a
unit circle transform to those

Symmetric/
same position vectors because

4 [XT [F][x]=1 X'] = [FIIX].
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Il Equations of ellipses

B Equation of an ellipse
centered at the origin
with its axes along the
X- and y- axes

1 ax”+0xy+dy’ =1

Displacement
vectors in black

ax+Q0y
P X =1
[x ] Ox+dy
a 0O X
3 [ y]{o y }{ }1
Y Position vectors that define a
Symmetric="" unit circle transform to position
4 [X]T [F][X] =1 vectors that define an ellipse

because [X'] = [F][X].
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Il Equations of ellipses

C “Symmetric” equation
of an ellipse centered
at the origin

1 ax” +2bxy+dy” =1

ax+ by
=1
2 [x y] bx+dy
a b X
=1
s Lol 5]

Symmetric
4 [xT [Fl[x]=1

10/23/19 GG303

Example : F = {

2
1

1
2

NITE STRAIN

W

2o

Displacement vectors are in
black. Blue numbers are
final axial lengths. Red
numbers are initial radii.
Displacement vectors are
symmetric about axes of
ellipse.

7



9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Il Equations of ellipses Exampze;p{ 2 1
. 0 2
D General equation of an -
ellipse centered at the Unit circle and Strain ellipse
origin Curved arrow shows rotation angle
2 1
F=[21;0 2]
1 ax’+(b+c)xy+dy’ =1 -
i ax+ by ] )
2 X =1 >
[ y] cx+dy
b X i i
3 [X )7] ¢ =1 -2 ] ] ]
Not symmetric if =» c d y -2 0 2
b#c
X
4 [X]T [F][X] =1 Vectors along axes of ellipse transform back

to perpendicular vectors along axes of unit

10/23/19 GG303 )
circle
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lll Rotations in homogenous deformation

A Let [X] be the set of all

position vectors that define a
unit circle ax ¥,

B Let[X'] be the set of all
position vectors that define
an ellipse described by a
homogenous deformation at
a point

C [X]=[FIIX] (Forward def.) rna. forer

D [X]=[F1!][X'] (Reverse def.)

INITIAL .-~~~
o Forward

\
\
\
\
\

E The matrices [F] and [F] I 0 WA

contain constants
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Ill Rotations in homogenous deformation (cont.)

F The differential tangent vectors

L

K

[dX’] and [dX] come from
dlfferentlatlng [X’] = [F][X] and
X] = [F][X’], respectively. NTAL -
(dX’] = [F][dX] (Forward def.)
dX] = [F][dX’] (Reverse def.)
F] transforms [X] to [X'], and
(dX] to [dX]

[F1] transforms [X’] to [X], and
(dX’] to [dX] 5
Position vectors are paired to Forward
corresponding tangents

FINAL Forward\\\

-
T
-
-
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Ill Rotations in homogenous deformation (cont.)

L Where a non-zero position
vector and its tangent are

perpendicular, the position ¥,

vector achieves its greatest
and smallest (squared)

.
.”  Forward

dx*

INITIAL.--~"

lengths, as shown below
M Q/:X/.X/:[X/]T[X/]
N Maxima and minima of

(squared) lengths occur
where dQ’ =0

O dQ'=d(X'eX')=X'ed
P 2(XedX’)=0=(X"edX")=0

10/23/19 GG303
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Ill Rotations in homogenous deformation (cont.)

Q The tangent vector

oerpendicular to the % »
ongest position vector INITIAL//____\
narallels the shortest
nosition vector (which lies
along the semi-minor axis), o
and vice-versa. o

R Similar reasoning applies \
to the corresponding unit M
circle.
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Ill Rotations in homogenous deformation (cont.)

S For the unit circle, all initial
position vectors are radial ¥ e
vectors, and each initial N—
tangent vector is
perpendicular to the
associated radial position
vector. The red initial FINAL /ferar,
vector pair [X*, dX*] and N e
the blue initial vector pair e e
[X*, dX*] both show this.
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Ill Rotations in homogenous deformation (cont.)

T  All the final position-tangent vector pairs for the
ellipse have corresponding initial position-tangent
vector pairs for the unit circle (and vice-versa).

U Every position-tangent vector pair for the unit circle
contains perpendicular vectors.

V  Only the position-tangent vector pair for the ellipse
that parallel the major and minor axes (i.e., the red
pair [X*, dX*’]) are perpendicular.

W “Retro-transforming” [X*’, dX*’] by [F1] yields the
initial red pair of perpendicular vectors [X*, dX*].

X  Conversely, the forward transformation of the red
pair of initial perpendicular vectors [X*, dX*] using
[F] yields the final perpendicular vectors pair [X*,
dXx*'].

Y The transformation from [X*, dX*] to [X*’, dX*']

involves a rotation, and that is how the rotation is
defined.

10/23/19 GG303 14



Ill Rotations in homogenous deformation (cont.)

The longest (X;’) and shortest (X,’)
position vectors of the ellipse are
perpendicular, along the red axes of
the ellipse, and parallel the tangents.

The corresponding retro-transformed
vectors ([X;] = [FI*[X;’], and [X,] = [F]
1[X,’]) (along the black axes) are
perpendicular unit vectors that
maintain the 90° angle between the
principal directions.

The angle of rotation is defined as the
angle between the perpendicular pair
{X; and X,} along the black axes of the
unit circle and the perpendicular
principal pair {X;’, X,’} along the red
axes of the ellipse.

These results extend to three
dimensions if all three sections along
the principal axes of the “strain”
(stretch) ellipsoid are considered.

See Appendix 4 for more examples.

10/23/19 GG303

Retro-deformed principal strain axes a

have the same orientation

Unit circle

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

“Strain” (stretch) ellipse

P

TN
/
~_

Retro-deformed Principal

principal strain axes strain axes T
Unit circle b

N
-1 =
[F] g

-—
AN
N

Deformed reciprocal principal
strain axes

e orientation

deformed reciprocal principal strain axes
have the sam

15
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IV Eigenvectors and eigenvalues
(used to obtain stretches and rotations)

A The eigenvalue matrix equation [A][X] = A[X]

1 [A] is a (known) square matrix (nxn)

2 [X]is a non-zero directional eigenvector (nx1)

3 Aisanumber an eigenvalue
4 A[X] is a vector (nx1) parallel to [X]
5 [A][X] is a vector (nx1) parallel to [X]
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A The eigenvalue matrix equation [A][X] = A[X]
(cont.)

6 The vectors [[A][X]], A[X], and [X] share the
same direction if [X] is an eigenvector

7 If [X] is a unit vector, A is the length of [A][X]

8 Eigenvectors [X.] have corresponding
eigenvalues [A\;], and vice-versa

9 In Matlab, [vec,val] = eig(A), finds
eigenvectors (vec) and eigenvalues (val)
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IV Eigenvectors and eigenvalues
B Example: Mathematical meaning of [A][X]=A[X]

Two eigenvalues

A={? ;} lTwo eigenvectors
A'-ﬁ':[z 1}&&&)
V2 | LD 2 N2 N2 T N2
A_x/f_:{z 1]\/5_:_&/5_:_\/5_

N2 L2 V2 32 TN
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IV Eigenvectors and eigenvalues

C Example: Geometric meaning
of [A][X]=A[X]

X'=FX

e

e Eigenvectors of symmetric F give
directions of the principal
stretches

e Eigenvalues of symmetric F
(i.e., A;, A,) are magnitudes of the
principal stretches S; and S,

10/23/19 GG303

Ay

s

1 1/ N
\| )£
: >
N r=1
Unit circle A=3
0 A, =1
Af:ﬂﬂ'l)“z:ﬂqlzzss
A, 7w’ ror e
A, — A
S AO: f_AO:SlS2
A A A
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IV Eigenvectors and eigenvalues

D Example: Matlab solution
of [A][X]=A[X]

>>A=[21;12]

2 1
1 2

>> [vec,val] = eig(A) ___Eigenvectors [X] given by
vec =

their direction cosines
-0.7071 || 0.7071

0.7071 |10.7071 Eigenvector/eigenvalue
C val = pairs

0 «—— Eigenvalues (A)
0

>> thetal = atan2(vec(2,2),vec(2,1))*180/pi
thetal =

Angle between x-axis
45 and largest eigenvector

>> theta2 = atan2(vec(1,2),vec(1,1))*180/pi
theta2 =

Angle between x-axis
135 And smallest eigenvector

|

10/23/19

* Matlab in 2016 does not order eigenvalues from largest to smallest

GG303

2 1
I 2

)

_—jfi’21>
- -
y %

R
I
—_ 9

/
NS
I

A =det[A]-1
Here, A=3—-1=2
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IV Eigenvectors and eigenvalues (Cont-) A Intersecting lines have non-parallel normals

E Geometric meanings of the real
matrix equation [A][X] =[B] =0

1

2

10/23/19

Al £0;
a [A]?lexists
b Describes two lines (or 3

planes) that intersect at the
origin

c X has aunique solution

|A| =0; A Parallel lines have parallel normals

a [A]! does not exist | AX =B=0 |

b Describes two co-linear line ny (1) nym x| _ | dy=0
that that pass through the n2 {2y dy=0
origin (or three planes that e ' '
intersect in a line orin a T @ (e - (2
plane through the origin) Al =ny *”yo - Nyt E=0

. i Ny XNy =

c [X] has no unique solution; n, 1772

can have multiple solutions Det[A] = area (volume) defined by

parallelogram (parallelepiped) based

on unit normals
GG303 21
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IV Eigenvectors and eigenvalues (cont.)

D Alternative form of an eigenvalue equation
1 [A]IX]=A[X]
Subtracting IA[X] = A[IX] = A[X] from both sides yields:
2 [A-IN][X]=0 (same form as [ A][X]=0)

E Solution conditions and connections with determinants
1 Unique trivial solution of [X] = 0 if and only if |A-IA|50
2 Multiple eigenvector solutions ([X] # 0)

if and only if |A-IA|=0

* See previous slide
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IV Eigenvectors and eigenvalues (cont.)
F Characteristic equation: |A-IA|=0

1 The roots of the characteristic equation are the
eigenvalues (A)
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IV Eigenvectors and eigenvalues (cont.)
F Characteristic equation: |A-IA|=0 (cont.)

2 Eigenvalues of a general 2x2 matrix A=| ¢
C

a |A-I= a;l df/”t =0

b (a—A)(d—A1)—bc=0
(a+d) = tr(A)
, (ad-bc) = |A|
c A —(a+d)l+(ad—bc)=9/r —
(a+d)t(a+d) —4(ad—be) |btA=tr(4)
d A4, = \/ ) A, =|Al




9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

IV Eigenvectors and eigenvalues (cont.)

G To solve for eigenvectors, substitute eigenvalues
back into AX=IX and solve for X (see Appendix 1)

H Eigenvectors of real symmetric matrices are
perpendicular (for distinct eigenvalues); see
Appendix 3

* All these points are important
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IV Solutions for general
homogeneous deformation
matrices

A Eigenvalues
1 Start with the

definition of sz _
quadratic elongation —5=0
Q, which is a scalar 0
2 Express using dot ST T,
products ){ '{f =0
3 Clear the XeoX

denominator. Dot

products and Q are X'OX'Z(X'X)Q

scalars.
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IV Solutions for general homogeneous

deformation matrices - -
A Eigenvalues

4
5
6

10/23/19

Replace X’ with [FX]
Re-arrange both sides - AL

Both sides of this equation re AT

off with [X]T, which cann;I:';:a;K’[X} F [F XJ=[X
zero vector, so it can be dropped e

from both sides to yield an —_—
eigenvector equation [FT F }[XJ =
"[A][X]

nxl1 | nxn _|

[FTF] is symmetric: [FTF]"=[FTF]
The eigenvalues of [F'F] are the
principal quadratic elongations
Q= (Lf/Lo) 2

The eigenvalues of [FTF] /2 are the
principal stretches S = (L¢/L,)

GG303

x| [Fx]=[x] 1

27
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IV Solutions for general hom n
32fl<13trrcr)1a?cioon rieatficaes DTTPBERERES [FTF:I[X]: Q[X]
B Special Case: [F] is symmetric
1 [F'F]=[F?] because F=F" [Fz][X]:Q[X]
2 The principal stretches (S) again are
the square roots of the principal

LS’ L
quadratic elongations (Q) (i.e., the =L.s="L=Jo=5
square roots of the eigenvalues of 0 L,

[F2])
3  The principal stretches (S) also are [F][X]_ S[X]

the eigenvalues of [F ], directly

4  The directions of the principal
stretches (S) are the eigenvectors
of [F], and of [FTF] = [F2]! @H
5  The axes of the principal (greatest
and least) strain do not rotate
10/23/19 GG303

F is symmetric

' “Quadratic

, strain ellipse”
Principal axes
do not rotate

28
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Example 1

[F] = [R][U]

By the polar decomposition

theorem, F can be formed by

a stretch and a rotation

First,
symmetrically
stretch the unit
circle using [U]

10/23/19

>

25}

2

1.5¢

Eigenvalues of [U]
give principal

- 2} - {2 05} stretch magnitudes

2 1

|

:[F]T[F”W:[ 425 45 r:{ 156 134 }

45 5 1.34 1.79

[R]=[F][U]‘1:{ 2 2 }[ 179 -134 }:{ 0.89 0.45}

05 1 -134 1.56 045 0.89

1.56 1.34
1.34 1.79

Eigenvectors of

[U] are along axes of
blue ellipses. Rotated
eigenvectors of

[U] give principal stretch
directions

0.89 045
-045 0.89

Second, rotate
the ellipse (not
the reference

| [U][X] | | frame) using [R]

GG303

29
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Example 2

2F

[Fl=IVIIR]

0.5r

F also can be formed by

a rotation and a stretch >~ o}

-05F

-1

-1.5

2t
2,

First, rotate the ™|
unit circle using O;_

[R]

10/23/19

[F][x]

-1

0

I &

> [0]3

.

0.89 045
045 0.89

Eigenvalues of [V]
also give principal

ey

[x']1=[F][x]: [F]=[V][R] stretch magnitudes
SR S

- e 8 3 1 [ 268 089
[v1=|[FI[F] ] :{ 315 } :{ 089 067 }
CRUNCE Al IR B
J | | Unrotated
1.5—[V]=[ (2)22 823 } eigenvectors of

[V] give principal
stretch directions
directly

| Second, stretch
| the rotated unit
| circle

GG303

2 symmetrically
using [V]

30



Example

Strain ellipse, F=[2 1,0 2] Unit circle, with retrotransformed Unit circle and Strain ellipse
with position vectors along axes and tangent vectors vectors along axes and tangent vectors Curved amow shows rotation angle
s T T T T T] T T T T s [ T T T T ]
3+ 4
6 - 6 -
2 4
4| B 4+ -
2 2k . 4
=
0+ 0k
2k - 2 —_ -
4 B “4 - E
2k .
-6 | B -6 -
EN .
1 1 | 1 | 1 L 1 1 | 1 1 1 1
-2 -1 0 1 2 -1 -0.5 0 0.5 1 -2 -1 0 1 2
X X

10/23/19 GG303
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Example

Unit circle and strain ellipse,
with selected displacements

f
|
|
\

Unit circle and reciprocal strain ellipse,

with selected displacements

Strain ellipse, F=[2 1,0 2]
with eigenvectors (blue) and principal axes [pink)

Recip strellipse,inF)=[0.5 -0.25;0 0.59)

with eigenvectors [green) and principal axes (red)

32
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VI  Key results
A For symmetric F matrices (F = FT)
1 Eigenvectors of F give directions of principal stretches
2 Eigenvectors of F are perpendicular
3 Eigenvalues of F give magnitudes of principal stretches
4 Eigenvectors do not rotate
B For non-symmetric F matrices (F # FT)
1 The directions of the principal stretches are given by rotated eigenvectors of [F'F]
2 Eigenvectors of [F'F] are perpendicular; eigenvectors of F are not
3 Eigenvalues of [F'F] give magnitudes of principal quadratic elongations
4 F can be decomposed into a symmetric stretch and rotation (or vice-versa)
a The stretch matrix U =[FTF]1/2
b The stretch matrix V =[FFT]/2
5 The rotation matrix R = F[FTF]/2 = [FFT]Y/2F
Need to know initial locations and final locations, or F, to calculate strains
The F-matrix does not uniquely determine the displacement history: e.g., F=RU=VR

o O
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Appendix 1

Examples of long-hand solutions for
eigenvalues and eigenvectors
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Characteristic equation: |A-IA|=0 AZ{ .’ }{ L }
c d I 2

Eigenvalues for symmetric [A]
tr(A) = (a+d) =4

d |A—Iﬂ|: 2-A 1 |:0 |A|=(ad-bC)=3

1 2-1

a—A b _
C d—A

b (a—A)(d-A)—bc=(2-1)(2-1)-(1)(1)=0

C 12—(a+d)/1+(ad—bc)=0

r(A)=A+1,=4

(a+d)++(a+d) —4(ad—bc) A At =3

2

d A, =

(242)+4(2+2) —4(2x2-1x1)
2

=2=1

e A4,=34=1
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Eigenvalue equation: AX=AX

!

Eigenvectors for symmetric [A]
i T
o, 2 1 o,
B }:{ 12 }[ B
a b _062 ~2 o, 2 1 o | 20, + B,
cdl g |7 B :{1 2} B, || o.+28,

a b 051‘\|:/11
) Tt

c d B,
Direction cosines of first eigenvector

_ L O 1 .
0, = tan 1&:tem 'ZL = tan™' — = 45° «— Anglefor
o, o, eigenvector 1
_ R 01 -1 .
(92:tan1&:tan1 2 =tan"' —=-45
a, o, 1 T
Angle for

eigenvector 2

10/23/19 GG303

a b
c d

| 2048 | Y
| e +2B8 |

s

5 [ne

= 131 1 1
=2 ]:>ﬁ =—

- ﬁz 2 2

Aty

36
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Characteristic equation: |A-IA|=0 A{ CCZ Z }{ ? g }

Eigenvalues for non-symmetric [A]

tr(A) = (a+d) =

3 |A—Il|= _ 2—A 0 |=0 |A|:(ad-bc):

a—A b
C d—A

b (a—A)(d=2)-bc=(2-2)(2-2)-(0)(1)=0
¢ A —(a+d)A+(ad—bc)=0

r(A)=A+1,=4

(a+d)+\(a+d) —4(ad -be) A=Al =4

d A4, = .

_(2+2)£(2+2) —4(2x2-0x1)
2

=210
e 4, =2,4=0
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Eigenvalue equation: AX=AX A{ “ Z }{ f g }
C
Eigenvectors for non-symmetric [A]
Ay

S

o, 2 0 o | 20, g o, ~0
B :{1 2} Bo| | 2B |7 BT

_a __051
=A
_cd_ﬁl} :

a b o, _2 o, :>|:2 0 } o | 2a, _9 o, o =0
= A, — 2
| C d | B, B, 12 B, o, +2[5, T B,
Angle for A,
elgenvector 1 VL\JIIrt\E zzlc:etazddstslain erITI]ipste Strain ellipse, F=[2 0;1 2]

with eigenvectors (blue) and principal axes (pink)

Glztan_lﬁl—tan ’B—tan oo = 100" j j )
o, 0 B //{)

Hz—tanlé—tanlﬁz—tan 00 =190" /> . N
" !

o,

-2

Angle for o x
eigenvector 2

10/23/19 GG303 38
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Appendix 2

Proof that the vectors AX are the
longest and shortest vectors from the
center of an ellipse to its perimeter
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VI Eigenvectors of a symmetric matrix

A Maximum and minimum squared
Iengths Y X’=acosb i+ bsind j
Set derivative of squared lengths
to zero to find orientation of
maxima and minimum distance
from origin to ellipse

;

bsin®
|

X' eX' =L’
d(X'eX’) _ aX’ dX’ g
( d@ ) = X,. d@ + dg o X' = 0 y dX’/d6 = -asin® i + bcos6 j

-asin® i
dx’/d ,
b\\ dX’/de bcosej
a :|

asin®

b \
o)

bcos® |

a

-, dX’ \ / ' dx’/d
[X, [ d@ = O \ // (tangent to e?lipse)
B Position vectors (X’) with .
maximum and minimum (position vector)
(Sq ua red ) I e ngt h saret h ose t h at X'+ dX’ /de = —a2sin6cose +b2sinfcose = (b2—a2)sindcose
X’ dX’/de =0ifa=b, 6 =0° or6=90°

are perpendicular to tangent
vectors (dX’) along ellipse
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VI Eigenvectors of a
symmetric matrix

C AX=AX

D Since eigenvectors X of
symmetric matrices are
mutually perpendicular,
so too are the
transformed vectors AX

E At the point identified
by the transformed
vector AX, the
perpendicular
eigenvector(s) must
parallel dX’ and be
tangent to the ellipse

Unit vector
parallel to
ellipse tangent
dX47de;

it parallels unit
Xq'=MX; eigenvector X,

Unit vector parallel to

ellipse tangent dX'/d6;
itis anti-parallel to unit
eigenvector X
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VI Eigenvectors of a symmetric
matrix

F Recall that position vectors
(X’) with maximum and
minimum (squared) lengths
are those that are
perpendicular to tangent
vectors (dX’) along ellipse.
Hence, the smallest and
largest transformed vectors
AX give the minimum and
maximum distances to an
ellipse from its center.

G The A values are the
principal stretches

H These conclusions extend to
three dimensions and
ellipsoids

Unit vector
parallel to
ellipse tangent
dX47de;

it parallels unit
Xq'=MX; eigenvector X,

Unit vector parallel to

ellipse tangent dX'/d6;
itis anti-parallel to unit
eigenvector X
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Appendix 3

Proof that distinct eigenvectors of a
real symmetric matrix A=AT are
perpendicular
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la  AX; =A X, 1b  AX, =A,X,
Eigenvectors X, and X, parallel AX; and AX,, respectively

Dotting AX, by X, and AX, by X, can test whether X, and
X, are orthogonal.

22 X,°AX, = X,oA X, = A, (X,¢X,)

2b X, eAX, = X, *A,X, = A, (X, *X,)

If A=A', then the left sides of (2a) and (2b) are equal:

3 Xy*AX; = AX e X, = [AX] '[X,] = [[X,] T[A] T ][X,]
= [X.] AT [X,] = [X4] '[[A] [X,]] = X, *AX,
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Since the left sides of (2a) and (2b) are equal, the right
sides must be equal too. Hence,

4 Ay (X0X,) =A; (X 0 X))

Now subtract the right side of (4) from the left

5 (A —A)(X;0X,) =0

e The eigenvalues generally are different, soA,— A, #0.
e For (5)to hold, then X, X, =0.

e | Therefore, the eigenvectors (X,, X,) of a real symmetric 2x2
matrix are perpendicular where eigenvalues are distinct

e The eigenvectors can be chosen to be perpendicular if the
eigenvactors are the same
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Appendix 4

Rotations in homogenous deformation:

An algebraic perspective
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VI Rotations in homogeneous deformation

A Just getting the size and shape of the F-VR
« )] . . —o . \ \Y
strain” (stretch) ellipse is not R = otation marn >
enough if [F] is not symmetric. Need R1\
to consider how points on the ellipse /
transform Ra20 v
B Can do this through a combination of
stretches and rotations \

. R
= ich “R”? s gope 3 y
1 F_VR (WhICh R ') sar:eprh:\cipals'trejihes, / /
a V =symmetric stretch matrix o lfees it betmuse

R differs

b R =rotation matrix
2 F=RU (WhiCh “u”? ”R”?) F=RU & R1 /
a R = rotation matrix :::ﬁi::f:nmn?;:ﬁ —>
b U= symmetric stretch matrix /1! 4

3 The choices become unique for Uy Rp=0
; . —5> >
symmetric stretch matrices

Us R3 S\
. —>
Ellipses have same shape
and orientation, but \
locations of points
on ellipses differ
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VI

C
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Rotations in homogeneous
deformation

If an ellipse is transformed to
a unit circle, the axes of the

ellipse are transformed too. \ |
In general, the axes of the

o
¢
.
.

ellipses do not maintain their
orientation when the ellipse is
transformed back to a unit
circle

If Fis not symmetric, the axes
of the red ellipse and the
retro-deformed (black) axes
will have a different absolute
orientation

The transformation from the
the retro-deformed (black)
axes to the the orientation of
the principal axes gives the
rotation of the axes.

GG303

Retro-deformed principal strain axes and

have the same orientation

Unit circle “Strain” (stretch) ellipse
p ﬁ\X
n, / )
_—
R b=5, ‘
+ T
’."’ “'. Small arrows
L * show rotation
D
N——" e ae®
Retro-deformed Principal
principal strain axes strain axes
Unit circle

.....
. .

Principal strain axes and

deformed reciprocal principal strain axes

. .

Small arrows
show rotation

Deformed reciprocal principal
strain axes
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have the same orientation
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VI

G

H
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Rotationso in homogeneous Unit irce “Strai (stretch) ellipse
deformation o >~

We know how to find the P / ]
principal stretch magnitudes: ;

they are the square roots of
the eigenvalues of the
symmetric matrix [ [FT][F] ]

The eigenvectors of [ [FT][F] ] AN
give some of the information AVEE S s ]
needed to find the direction , Retro-deformed Principal
. . S prlnC|paI strain axes strain axes - 'g
of the principal stretch axes. o Unit e -
The rotation describes the i — £f
orientation difference £23 ! =8
: : 5.8 < ST
between the (red) principal Ty 2 £k
strain (stretch) axes and their £58 % S £
(black) retro-deformed g
counterparts
Deformed reciprocal principal
strain axes
GG303 49

have the same orientation
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VI  Rotations in homogeneous
deformation

To find the rotation of the
principal axes, start with
the parametric equation for
an ellipse and its tangent,
and the requirement that
the position vectors for the
semi-axes of the ellipse are
perpendicular to the
tangent

Let © give the orientation of X,

where X transforms to X’.

X’ =(acos@+bsin@)i +(ccosh+dsin6)

dx’

—

. dX’
]
de

10/23/19

i

asin@+bcos@)i +(—csinf+dcosh) j

What value of 6 will yield a vector X
=0 | such that X’ will be perpendicular
to the tangent of the ellipse?

GG305

X’=acosb i+ bsind j

a

y dX’/d6 =-asin® i + bcos6 j

asin®

b \
o)

bcos® |

a
X

-asin® i
dx’/d ,
b\\ dX’/de bcosej
a :|

dX’/de

(tangent to ellipse)

XI

(position vector)

X'+ dX’ /de = —a2sin6cose +b2sinfcose = (b2—a2)sindcose
X‘«dX’/de =0ifa=b, 8 =0° or 6 =90°

X is a position
vector for a unit
xcircle. [X'] = [F][X].
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VI Rotations in homogeneous
deformation

Now solve for O satisfying
X'edX’'/dB =0 I

y X’=acos0 i+ bsind j

[ bsing| b X a
s . g . = \ acoso X
X’ =(acos@+bsinh)i +(ccosO+dsinb)j | :
&% __ . —
0" (—asin@+bcos8)i +(—csinf+dcosb)j
=, y dX’/d6 = -asin6 i + bcos6 j
X, L4 dX = O I -asin® i
do ax /AN P hcoso
=—a’sin@cosO+abcos’ O —absin® @ +b*sinBcosO ine
—c?sinBcosO+cdcos’ 0 — cdsin® @ +d’ sin@cos O -
dx"/de
=—(a’=b*+¢* —d”)sinOcosf +(ab + cd)cos’ O —(ab+cd)sin’ 6 (tangeqt to ellpse)
=—(a’=b*+¢* —d")sinOcos O +(ab + cd)(cos’ 6 —sin’ 6)
I X’
2 2 2 2 (position vector)
—(a —-b"+c" —d )
_ . X'+ dX’ /de = —a2sinBcos +b2sinBcose = (b2—a2)sinecose
- 2 Sln20+(ab+Cd)C0829 X'-dX'/dG=0ifa=b,6=0°,or6=90°
(a* -0+ =d*)
= 5 sin(—26)+ (ab + cd)cos(—260) =0
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VI Rotations in homogeneous
deformation (Cont.)

Y X’=acos i+ bsinb j

(az—b2+cz—d2)

5 sin(—260)+(ab + cd)cos(—26)=0

Jacos!

—2(ab+cd)
a—b*+c*-d’

tan(—26) =

y dX’/d6 = -asin6 i + bcos6 j

2 2
0, = ltan_1 (ab+cd) ,0,= ltan_1 5 (azb " Czd) - [£90°
A" =D+ —d" ) m—

So 6, and 6, are 90° apart. So X, and X, that transform
to X," and X,’ are perpendicular.

Reca ” that tWO d ngles 261 X'+ dX’ /do = —a2sinecose +b2sinecoso = (b2—a2)sindcoso

that differ by 180° have \fy X'+ dX'/d0 =0ifacb,0 =0 or = o0”
the same tangent
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