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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Homogenous
deformation

deforms a
unitcircleto
a‘“strain N>

ellipse”

Forward -

N
Rotation

Objective: To
quantify the
size, shape,
and orientation
of strain ellipse
using its axes

\
Forward ‘,

Forward. _

8/17/17 GG303 3

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

| Main Topics
A Equations for ellipses
B Rotations in homogeneous deformation
C Eigenvectors and eigenvalues

D Solutions for general homogeneous
deformation matrices

E Key results
F Appendices (1, 2, 3,4)
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Il Equations of ellipses

A Equation of a unit circle y
centered at the origin
1 X +y’ =1 X
X 1x+ Oy
2[x ] =[x ] =1
y Ox+1y
3 [x y] 1 0 A Here, [F] is the identity matrix [I].
Y 0 1 y - So position vectors that define a
Symmetric/ unit circle transform to those
4 X T Flix1=1 same position vectors because
XL X1 = [FIIX]
8/17/17 GG303
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Il Equations of ellipses

B Equation of an ellipse
centered at the origin
with its axes along the
x- and y- axes

1 ax*+0xy+dy* =1

om0

Ox+dy

3 [xy] @0 =t
0 d y Position vectors that define a

unit circle transform to position

Y4, Displacement
< vectors in black

Symmetric
4 T _ vectors that define an ellipse
[X] [F][X] I because [X'] = [F][X].
8/17/17 GG303 6
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Il Equations of ellipses

2

Example : F z[ {

1
2

C “Symmetric” equation
of an ellipse centered
at the origin

1 ax’ +2bxy+dy’ =1

5 [x y][ ax+by ]:1

bx+dy

l,

Displacement vectors are in
a b X black. Blue numbers are
3 [x y] =1 final axial lengths. Red
b d y numbers are initial radii.
Symmetric Displacement vectors are
T symmetric about axes of
4 [X] [Fl[x]=1 elipse.
8/17/17 GG303 7

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Il Equations of ellipses

D General equation of an
ellipse centered at the
origin

1 ax’+(b+c)xy+dy’ =1

5 [x y][ ax+by }:1

Example : F :[

2 1
0 2

Unit circle and Strain ellipse
Curved arrow shows rotation angle

F=[

21;02]

cx+dy
a b X L 4

3 [x y] = 1 1 1
Not symmetric if =» c d y -2 0 2
b#c X

T
4 [X] [F] [X] =1 Vectors along axes of ellipse transform back
to perpendicular vectors along axes of unit
8/17/17 GG303
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

[Il Rotations in homogenous deformation

A Let [X] be the set of all

position vectors that define a
unit circle
B Let [X'] be the set of all
position vectors that define
an ellipse described by a
homogenous deformation at
a point /]
[X'] = [FI[X] (Forward def.) rnat/forver
[X] = [F1][X'] (Reverse def) e A
E The matrices [F] and [F1] == e N e
contain constants

dXN\x dx*

INTIAL. ="
" Forward

o 0O

©

8/17/17 GG303
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Rotations in homogenous deformation (cont.)

F The differential tangent vectors
[dX'] and [dX] come from
differentiating [X’] = [F][X] and
[X] = [F1][X'], respectively.

G [dX'] =[F][dX] (Forward def.)

H [dX] = [F1][dX’] (Reverse def.)

| [F] transforms [X] to [X’], and S
[dX] to [dX'] F dA

FINAL/ Forverd',

J [F1] transforms [X’] to [X], and ‘
[dX’] to [dX]

K Position vectors are paired to
corresponding tangents

¥ dx

INITIAL.--""
" Forward

8/17/17 GG303 10
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
[Il Rotations in homogenous deformation (cont.)

L Where a non-zero position
vector and its tangent are
perpendicular, the position
vector achieves its greatest
and smallest (squared)
lengths, as shown below

Q' =X"eX'=[xT[x']
Maxima and minima of L

(squared) lengths occur FiNAL /et
wheredQ’ =0 \

O do'=d(X'eX')=X"edX'+dX'eX'=0
P 2(X'edX’)=0=|(X"edX’)=0

¥ dx

INTIAL. ="
" Forward

=<

8/17/17 GG303 11
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[Il Rotations in homogenous deformation (cont.)

Q The tangent vector
perpendicular to the oOF-. e
longest position vector
parallels the shortest
position vector (which lies
along the semi-minor axis),
and vice-versa. AL oy

INITIAL.--""
" Forward

R Similar reasoning applies % ,
to the corresponding unit T
circle.

8/17/17 GG303 12
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

[Il Rotations in homogenous deformation (cont.)

S For the unit circle, all initial

position vectors are radial o ax

vectors, and each initial AL
tangent vector is A
perpendicular to the
associated radial position o
vector. The red initial a o,
vector pair [X*, dX*] and N :
the blue initial vector pair e 1
[X*, dX*] both show this.

8/17/17 GG303
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[Il Rotations in homogenous deformation (cont.)

T All the final position-tangent vector pairs
for the ellipse have corresponding initial
position-tangent vector pairs for the unit

circle (and vice-versa). de\\ dx*

U Every position-tangent vector pair for the .....
unit circle contains perpendicular vectors. INITIAL .-~ <

- Forward

V  Only the position-tangent vector pair for
the ellipse that parallel the major and
minor axes (i.e., the red pair [X*’, dX*']) are
perpendicular.

W “Retro-transforming” [X*’, dX*'] by [F]
yields the initial red pair of perpendicular —
vectors [X*, dX*]. FINAL/Forwerd',

X Conversely, the forward transformation of
the red pair of initial perpendicular vectors
[X*, dX*] using [F] yields the final
perpendicular vectors pair [X*’, dX*'].

Y The transformation from [X*, dX*] to [X*’,
dX*'] involves a rotation, and that is how
the rotation is defined.

8/17/17 GG303
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

[Il Rotations in homogenous deformation (cont.)

e The longest (X,’) and shortest (X,’)
position vectors of the ellipse are
perpendicular, along the red axes of Unitcircle “Strain’(stetch) elfipse
the ellipse, and parallel the tangents. \x f. X )

® The corresponding retro-transformed
vectors ([X,] = [FI}[X,’], and [X,] =
[FI1[X,’]) (along the black axes) are
perpendicular unit vectors that
maintain the 90° angle between the
principal directions.

e The angle of rotation is defined as the
angle between the perpendicular pair
{X, and X,} along the black axes of the
unit circle and the perpendicular
principal pair {X,’, X,’} along the red
axes of the ellipse.

e These results extend to three
dimensions if all three sections along
the principal axes of the
“strain” (stretch) ellipsoid are
considered.

¢ See Appendix 4 for more examples.

Retro-deformed principal strain axes

8/17/17 GG303
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IV Eigenvectors and eigenvalues
(used to obtain stretches and rotations)

A The eigenvalue matrix equation [A][X] = A[X]

=

[A] is a (known) square matrix (nxn)

2 [X]is a non-zero directional eigenvector (nx1)

3 Aisanumber, an eigenvalue
4 A[X] is a vector (nx1) parallel to [X]
5 [A][X] is a vector (nx1) parallel to [X]

8/17/17 GG303
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A The eigenvalue matrix equation [A][X] = A[X]

(cont.)

6 The vectors [[A][X]], A[X], and [X] share the
same direction if [X] is an eigenvector

7 If [X] is a unit vector, A is the length of [A][X]

8 Eigenvectors [X] have corresponding
eigenvalues [\], and vice-versa

9 In Matlab, [vec,val] = eig(A), finds
eigenvectors (vec) and eigenvalues (val)

8/17/17

GG303
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IV Eigenvectors and eigenvalues
B Example: Mathematical meaning of [A][X]=A[X]

o[i]

8/17/17

Two eigenvalues

Two eigenvectors
LN

[~
V2 T V2 /
_3\5_:3_\5 7
W2 | T V2

1\
\

/

18

8/17/17
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IV Eigenvectors and eigenvalues

C Example: Geometric meaning
of [A][X]=A[X]

X'=FX

2]

e Eigenvectors of symmetric F give
directions of the principal stretches
o Eigenvalues of symmetric F
(i.e., A, A,) are magnitudes of the
principal stretches S, and S,

8/17/17 GG303

y
3
71 |
:I \ X
\ T
\\ /’ r:l
) \Unitcirclg A4=3
T 2, =1
i:ﬂﬂ“l/’%:iﬁzss
A, r’ rr "2
A, - A,
A= A‘):—f—izs,sfl
4, A A
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IV Eigenvectors and eigenvalues

D Example: Matlab solution
of [A][X]=A[X]

>>A=[21;12]
A=
2 1
1 2
>> [vec,val] = eig(A igenvectors [X] given by
vec = their direction cosines
-0.7071 || 0.7071 . .
0.7071 ||0.7071 Elgenvector/elgenvalue
val = pairs
0 '«—— Eigenvalues (A)
0
>> thetal = atan2(vec(2,2),vec(2,1))*180/pi
thetal = Angle between x-axis
45 and largest eigenvector
>> theta2 = atan2(vec(1,2),vec(1,1))*180/pi
theta2 = Angle between x-axis
135 And smallest eigenvector

21
1 2
y
3
A o N \61
7 TN FT \
|l \\l X
\ ./ A =3
N L=1
A=det[A]-1

Here,A=3-1=2

* Matlab in 2016 does not order eigenvalues from largest to smallest‘
GG303

8/17/17
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IV Eigenvectors and eigenvalues (cont.)
E Geometric meanings of the real
matrix equation [A][X] = [B] =0
1 |A|#£0;
a [A]lexists
b Describes two lines (or 3
planes) that intersect at the
origin
¢ X has a unique solution
2 |A|=0;
a [A]! does not exist

b Describes two co-linear lines
that that pass through the
origin (or three planes that
intersect in aline orina
plane through the origin)

Intersecting lines have non-parallel normals

AX =B=0

n, (D n, (D x| _ |dy=0
Liw @ | [y = |dy0

Parallel lines have parallel normals

AX =B=0
n, (1) n (1) x| _ |dq=0
{nim n@| |y = | a0

Al =nyMxn @) n D+ n @)= 0

nyxny=0

¢ [X] has no unique solution; n,
can have multiple solutions Det[A] = area (volume) defined by
parallelogram (parallelepiped) based on
unit normals
8/17/17 GG303 21

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

IV Eigenvectors and eigenvalues (cont.)

D Alternative form of an eigenvalue equation
1 [A]IX]=AIX]
Subtracting IA[X] = A[IX] = A[X] from both sides yields:
2 [A-IA][X]=0 (same form as [ _A4][X]=0)

E Solution conditions and connections with determinants
1 Unique trivial solution of [X] = 0 if and only if |A-IA|20
2 Multiple eigenvector solutions ([X] # 0)

if and only if |A-IA|=0

* See previous slide

8/17/17 GG303 22
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IV Eigenvectors and eigenvalues (cont.)
F Characteristic equation: |A-IA|=0

1 The roots of the characteristic equation are the
eigenvalues (M)

8/17/17 GG303 23
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IV Eigenvectors and eigenvalues (cont.)
F Characteristic equation: |A-IA|=0 (cont.)
2 Eigenvalues of a general 2x2 matrix A=| ¢ Z }
C

a—1 b
=0
c d—l‘ /

b (a—2A)(d-—A)—bc=0

a |[A-1I2|=

(a+d) = tr(A)

(ad-bc) = |A]
c ;tz—(a+d)l+(ad—bc)=/£)§/ —
(a+d)(a+d) —4(ad—bc) P+h=mr(4)
d 4.4 = 5 h=|A

8/17/17 GG303 24
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

IV Eigenvectors and eigenvalues (cont.)

G To solve for eigenvectors, substitute eigenvalues
back into AX=IX and solve for X (see Appendix 1)

H Eigenvectors of real symmetric matrices are
perpendicular (for distinct eigenvalues); see
Appendix 3

* All these points are important

8/17/17 GG303
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IV Solutions for general
homogeneous deformation
matrices
A Eigenvalues

1 Start with the
definition of
quadratic elongation
Q, which is a scalar

2  Express using dot
products =Q

3 Clearthe
denominator. Dot

products and Q are X e
scalars.

g TP N
Il
Q

o
:><\l

<
[ ]
P

3
Il
<
[ J
<
()

8/17/17 GG303
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IV Solutions for general homogeneous
deformation matrices ( -

A Eigenvalues X'e

X)Q
> eamrange both sdes = [1FIx] [1FIx]=[x] (x1e

nxn  nxl nxn  nxl
6 Both sides of this equation T
off with [X]", which cann:tl;:ag\‘[ig] Lf;} Lﬂ}i{l} [n)xf} Q[gfl]
zero vector, so it can be dropped 11
from both sides to yield an Y
eigenvector equation |:£; n€l:||:n))g:|=Q|:£g:|
7 [FTF] is symmetric: [FTF]"=[F"F]
8 The eigenvalues of [FTF] are the "[A][X] = A[X]"
principal quadratic elongations
Q= (Lf/LO) 2
9 The eigenvalues of [FTF] /2 are the
principal stretches S = (L¢/L,)

8/17/17 GG303 27
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Y Seformation matrces T EeeOu [F'F][x]=0[X]
B Special Case: [F] is symmetric
1 [F'F]=[F2] because F=F' [Fﬂ[X]:Q X
2 The principal stretches (S) again are
the square roots of the principal 12

X L

quadratic elongations (Q) (i.e., the 0=-%:S —L—f:f S
square roots of the eigenvalues of
[F2])

3 The principal stretches (S) also are [F1x]
the eigenvalues of [F], directly

4  The directions of the principal )
stretches (S) are the eigenvectors @ ./
of [F], and of [FTF] = [F2 ]! /

5 The axes of the principal (greatest
and least) strain do not rotate

8/17/17 GG303 28

/"Quadratic

it cil [/ /strain ellipse”
Unit circle ‘;‘Stra\' lipse / P

" Principal axes
do not rotate

14
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Eigenvalues of [U]
[¥)=(F)Lx]: [F]=[R][V) 8tivetr’:ncipa'.t )
stretch magnituaes
{ 2 2]; [F]r:[z ois} g

e[ 53 (1503

[R]:[F][U]":{ 2 2 }{ 179 -1.34 }{ 089 0.45}

05 1 -1.34 156 -045 089

Eigenvectors of

[U] are along axes of
blue ellipses. Rotated
eigenvectors of

[U] give principal stretch
directions

# e| 089 045
045 0.89

Second, rotate
the ellipse (not
the reference

frame) using [R]

Example 1 el 2 o2
J 7 TLos
[F] = [R][U]
2 [v]=| 156 134
2 T 134 179
First, [
symmetrically "
stretch the unit
circle using [U] -
V2 o
. [U][x]

8/17/17
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Example 2

2

Fl=IVIR] "

05

Eigenvalues of [V]
also give principal
[x)=[F][x]): [F]=[V][R] stretch magnitudes

[F]:[ 02.5 ? } <Y { ; Ois } l

> ° 12
12 8 3 2.68 0.89
-05 v]=|[F|[F] | = =
) (vI=[lF10Y ] {315} {0.890()7}
-15 [R]:[V]’l[F]Z 0.67 -0.89 2 2 _ 089 045
S -0.89 2.68 05 1 -045 0.89
2 -1 0 1 2
2 2
sl R=| 089 045 ol [v]=| 268 089 Unrotated
First, rotate the - 045 0.89 | 089 067 eigenvectors of
— 1 [V] give principal

unit circle using D;
[R] .- (

stretch directions
directly

' Second, stretch

| the rotated unit
- [RI[X] T Sageg BRI S
PR 0 i 2 2 1 o 1 2 symmetrically
using [V]
GG303 30
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Example

St elipae, F=[2 1,0 2 Unitcicle,
vith
G T T T T T T T
st 1
6 5 R
2t 1
4 4 B
2 2 .
A
0 A 0 y
2 2 - 1
4 4 B
2 1
5 N 1
K1 1
L L P L n L
2 0 7 S5 00§ A B B B
x
8/17/17 GG303 31
Unit circle and strain ellipse, Strain ellipse, F=[2 1;0 2]
with selected displacements with eigenvectors (blue) and principal axes (pink)
2 - - — -
1 1 |
=0 =0 / ‘ /
-1 -1 ‘ w
i — i 3 B i 3
Unitcircle and reciprocal strain ellipse, Recipstrelipse, indF)={0.5 -0.25,0  0.5]
with selected displacements with eigenvectors (green) and principal axes (red)
1 1
05 05
= 0 = 0 .
0.5 -0.5
-1 -1
- 05 05 [ B [] 0.5 1
x
8/17/17 GG303 32
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Key results
A For symmetric F matrices (F = F7)
1 Eigenvectors of F give directions of principal stretches
2 Eigenvectors of F are perpendicular
3 Eigenvalues of F give magnitudes of principal stretches
4 Eigenvectors do not rotate
B For non-symmetric F matrices (F # FT)
1 The directions of the principal stretches are given by rotated eigenvectors of [FTF]
2 Eigenvectors of [F'F] are perpendicular; eigenvectors of F are not
3 Eigenvalues of [FTF] give magnitudes of principal quadratic elongations
4 F can be decomposed into a symmetric stretch and rotation (or vice-versa)
a The stretch matrix U =[FTF]¥/2
b The stretch matrix V =[FFT]¥/2
5 The rotation matrix R = F[FTF]¥2= [FFT)¥/2F
C Need to know initial locations and final locations, or F, to calculate strains
D The F-matrix does not uniquely determine the displacement history: e.g., F=RU=VR

8/17/17 GG303 33
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Appendix 1

Examples of long-hand solutions for
eigenvalues and eigenvectors

8/17/17 GG303 34
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Characteristic equation: |A-IA|=0 A{ j Z }:{ f ; }

Eigenvalues for symmetric [A]
tr(A) = (a+d) =
_| a4t b 2-4 1 ‘20 |A|=(ad-bc) =

d—a |

b (a=2)(d=2)=bc=(2-2)(2-2)-(1)(1)=0
¢ A —(a+d)L+(ad—bc)=0

\/ > r(A)=A+4,=4
+ —_ —
q ll,/lz=(a+d)_ (a+j) 4(ad-bc) A=A, =3
2+2)+4(2+2) —4(2x2-1x1
:(+)\/(+)2 (2% X):zﬂ
e A=31,=1

8/17/17 GG303
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Eigenvalue equation: AX=AX Az[ ‘; Z }z{ f ; }
Eigenvectors for symmetric [A]

A
a b o | o, 2 1 «, 200+, \ll o,
el n s T e H
a b o, 2 1 0!2 20‘ +ﬂ2 2 _
{c d}{ ﬁz} A{ B, }:{1 2}{ a2+2ﬁz T{ g |7

A

N

_ Lo 1 5
91 =tan 'ﬁ=tan P21 —tan™' = = 45° «— Angle for
o, o, 1 eigenvector 1
_ Lo -1 N
6, = tan '&=tan '—2=tan"'—=-45
o, o, 1 T
Angle for

eigenvector 2

8/17/17 GG303 36
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Characteristic equation: |A-IA|=0 A= j Z }:{ f (2) }

Eigenvalues for non-symmetric [A]

tr(A) = (a+d) =4

a |A-1A= _| 2=4 0 ‘zo |A]=(ad-bc) =4

a—A b
d—2

b (a=A)(d-A)—bc=(2-2)(2-1)—(0)(1)=0
¢ A —(a+d)L+(ad—bc)=0

(a+d)i\/(a+d)2—4(ad—bc) tr(A):/ll+2'2:4

d 2,4, = 5 |Al=2,4,=4
24+2)+4J(2+2) —4(2x2-0x1
:(+)J(+)2 (2x2-0x1)
e 1,=2,14=0
8/17/17 GG303 37
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Eigenvalue equation: AX=AX A= ‘; Z}{ f (2) }
Eigenvectors for non-symmetric [A]
}\1
a Q, Pl «Q, 20 Q, 20, \ll Q,
L } 6| " 8 2{1 2} B | a2 |7 8 707"
a b o, a, 20 a, 20, o,
{ ¢ d }[ B, }:l{ B, }:{ 12 }{ B, H o, +2p, H{ B, }:“220

Angle for
i Strain ellipse, F = 2 0;1 2
eigenvector 1 with selecte train ellipse, F = [2 0; 1 2]

QU

V]

Unit circle and strain ellipse,
d di

ﬁ ﬁ with eigenvectors (blue) and principal axes (pink)
v 2
-1 -1 -1 °
6, =tan™' —t=tan™ =- =tan" oo = £90 <
051 1 /y' "\\\ 4 1 e — r’\’\
>0 A -0 (Y )
-1 -1 -1 o '\ \ /
0, =tan B, = tan B =tan =190 . © < - N
o, /
-2 v -2
-2 -1 0 1 2 -2 -1 0 1 2
Angle for x x
eigenvector 2
8/17/17 GG303 38
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Appendix 2

Proof that the vectors AX are the
longest and shortest vectors from the
center of an ellipse to its perimeter

8/17/17 GG303 39
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VI Eigenvectors of a symmetric matrix
A Maximum and minimum squared

lengths 1Y xr=acosdi+bsingj
Set derivative of squared lengths P .
to zero to find orientation of ‘
maxima and minimum distance |
from origin to ellipse A‘-“
X'eX'=L/’ . ,
d( X’ ”') J/
X'eX') _ X' dX' - ’
T=X,.E+£.X’=O vy dX’/d6 = -asin i + bcos j
1 -asind i
< axX’ y ‘ dx: /dﬂ\\x dX’/d;K\\\Tbcowj
2 ° =0 & )
do ‘
< \ x'
[X! ° dd); J =0 ((ang:lr: rgje?hpse)
\\\\ /
B Position vectors (X’) with ~ =
maximum and minimum (position vector)
(squared) lengths are those that 0 X/ - asinicoss bsingcoss - 0%+ sinicose

are perpendicular to tangent

vectors (dX’) along ellipse . 40
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VI Eigenvectors of a
symmetric matrix

C AX=AX

D Since eigenvectors X of
symmetric matrices are
mUtua”y perpendICU|arl Unit vector parallel to
SO too are the ellipse tangent dX'/d®;

itis anti-parallel to unit

transformed vectors AX  cigenvectorx

E At the point identified
by the transformed
vector AX, the
perpendicular
eigenvector(s) must
parallel dX’ and be
tangent to the ellipse

Unit vector
parallel to
ellipse tangent
dXq'/d6;

it parallels unit
Xy'=MXq eigenvector Xy

8/17/17 GG303 41
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VI Eigenvectors of a symmetric
matrix

F Recall that position vectors
(X’) with maximum and
minimum (squared) lengths
are those that are
perpendicular to tangent
vectors (dX’) along ellipse. ~ ptecorvaai®ie,
Hence, the smallest and itis anti-parallel o unit
largest transformed vectors oo
AX give the minimum and
maximum distances to an
ellipse from its center.

G The A values are the
principal stretches

H These conclusions extend to
three dimensions and
ellipsoids

Unit vector
parallel to
ellipse tangent
dXq'/d6;

it parallels unit
Xy'=MXq eigenvector Xy

8/17/17 GG303 42
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Appendix 3

Proof that distinct eigenvectors of a
real symmetric matrix A=AT are
perpendicular

8/17/17 GG303 43
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la  AX; =\ X, 1b  AX, =AX,
Eigenvectors X, and X, parallel AX, and AX,, respectively

Dotting AX, by X, and AX, by X, can test whether X, and
X, are orthogonal.

28 X,*AX, = X,*A,X, = A, (X,*X,)

2b X 0AX, = X, oA,X, = A, (X, *X,)

If A=AT, then the left sides of (2a) and (2b) are equal:

3 X,0AX, = AX,*X, = [AX,]T[X,] = [[X,] T[A] T1[X,]
= [Xl] T[A] [Xz] = [Xl] T[[A] [Xz]] = X1°AX2
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Since the left sides of (2a) and (2b) are equal, the right
sides must be equal too. Hence,

4 A, (X,*X,) =M, (X;*X,)

Now subtract the right side of (4) from the left

5 (A;—A)(X,2X,) =0

e The eigenvalues generally are different, soA,— A, # 0.
e For (5) to hold, then X, X, =0.

* | Therefore, the eigenvectors (X;, X,) of a real symmetric 2x2
matrix are perpendicular where eigenvalues are distinct

e The eigenvectors can be chosen to be perpendicular if the
eignevactors are the same
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Appendix 4

Rotations in homogenous deformation:
An algebraic perspective
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VI Rotations in homogeneous deformation

A Just getting the size and shape of the
“strain” (stretch) ellipse is not
enough if [F] is not symmetric. Need
to consider how points on the ellipse
transform

B Can do this through a combination of
stretches and rotations

1 F=VR (which “R"?)
a V =symmetric stretch matrix
b R =rotation matrix
2 F=RU (which “U”? “R"?)
a R =rotation matrix
b U= symmetric stretch matrix

3 The choices become unique for
symmetric stretch matrices

8/17/17 GG303

R = rotation matrix \
V = stretch matrix \
R1
Ellipses have same shape R3/
and orientation, and
same principal stretches,
but locations of points
on ellipses differ because

Rdiffers.

F RU R
R= ottt
Rz 0
R3 Q

U2

Ellipses have same shape
and orientation, but
locations of points

on ellipses differ
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VI  Rotations in homogeneous
deformation

C If an ellipse is transformed to
a unit circle, the axes of the
ellipse are transformed too.

D In general, the axes of the
ellipses do not maintain their
orientation when the ellipse is
transformed back to a unit
circle

E If Fis not symmetric, the axes
of the red ellipse and the
retro-deformed (black) axes
will have a different absolute
orientation

F The transformation from the
the retro-deformed (black)
axes to the the orientation of
the principal axes gives the
rotation of the axes.

8/17/17 GG303

Unlt clrcle “Strain” (stretch) ellipse

Retro-deformed Prmc\pa\
principal strain axes strain axes \

inaxes

Unit c\rcle

have the same orientation
|
have the same orientation

Retro-deformed principal strain axes and

Deformed reciprocal principal
strain axes
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VI Rotations in homogeneous
deformation

G We know how to find the
principal stretch magnitudes:
they are the square roots of
the eigenvalues of the
symmetric matrix [ [FT][F] ]

H The eigenvectors of [ [FT][F] ]
give some of the information
needed to find the direction of
the principal stretch axes. The
rotation describes the
orientation difference
between the (red) principal
strain (stretch) axes and their
(black) retro-deformed
counterparts

Retro-deformed principal strain axes and

8/17/17 GG303

Unit circle “Strain” (stretch) ellipse

Retro-deformed Principal
principal strain axes strain axes

have the sam

Deformed reciprocal principal
strain axes
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VI  Rotations in homogeneous
deformation

| To find the rotation of the
principal axes, start with
the parametric equation for
an ellipse and its tangent,
and the requirement that
the position vectors for the
semi-axes of the ellipse are
perpendicular to the
tangent

Let O give the orientation of X,
where X transforms to X’.

X’ =(acos+bsinb)i +(ccosh+dsinb)j

dx’ . - : =

0 =(-asin@+bcosB)i +(—csinf+dcos0)j

o2 What value of 6 will yield a vector X

=, dX . .

X'e 20 =0 | such that X’ will be perpendicular
to the tangent of the ellipse?

8/17/17 GG30

Y X’=acosb i+ bsind j

//" ‘*\\
/ ] \ . aae
/ DY Xis a position
N, vector for a unit

/% circle. [X'] =[FI[X].

Ly dX’/d6 = -asin® i + bcosd j

-asin® |

p N <
/ dx’/d §
v , O\ /de(osB j

dX’/de
(tangent to ellipse)

X

(position vector)

X+ dX’ /d6 = -asinBcose +b2sinecose = (b2-a?)sinecose
X+ dX’/de =0ifa=b, 6 =0° or 6 =90°
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VI Rotations in homogeneous
deformation

Now solve for O satisfying
X'edX'/dO =0

X' =(acos@+bsinB)i +(ccosf+dsin@)j

X'=acost i+ bsin0 j

ax’ =(~asin@+bcosB)i +(~csin@+dcosf) j
do !
X vy dX’/d(-):rvwmi:l:‘«‘)slb/
X'e 0 =0 dxdo dX’/qu\ '
=-a’sinfcos +abcos’ 6 —absin® 0 + b* sin6 cos O Qo
—¢”sin@cos@ + cd cos® O — cdsin” O + d” sin@ cos O ‘ o
=—(a’=b*+¢* —d’)sinOcos® +(ab+cd)cos’ 0 — (ab+cd)sin’ 0 (angegta s
=—(a’ —b*+ ¢ —d’)sin@cos 6 +(ab+cd)(cos’ 6 —sin §)
osition vector)
— _(az - bz + Cz - dz) . N X'~dX'/d1'):fazsinﬂcosﬁﬂbZSmBCOSH:1l)(;azﬂinﬁcosﬁ
- 2 Sm20+(ab+6d)cos 260 X+ dX’/de = 0ifa=b, 0 =0°,or 6= 90°
LI
- wsin(—zeﬁ— (ab-+ cd)cos(~26) =0
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VI Rotations in homogeneous
deformation (Cont.)
il 17 xr=acoso i+ bsino
wsin(—29)+(ab+ cd)cos(—20)=0
~2(ab+cd .
an(20)= T
I 2(ab+cd) | 2(ab+cd) . Ty
b=\ orre-a )% 2" o opro-a )22 SR N Jeo
So 6, and 6, are 90° apart. So X; and X, that transform st

(tangent to ellipse)

to X,’ and X,’ are perpendicular. )
.
(position vector)
Recall that two angles A\ - = —ssinocoss ssiocosd - GPorbinrons
that differ by 1800 have X’+dX’/de =0if a=b, 8 =0°, or 6 = 90
the same tangent
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