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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
I Main Topics
A Elementary linear algebra relations
B Equations for an ellipse
C Equation of homogeneous deformation
D Eigenvalue/eigenvector equation

E Solutions for symmetric homogeneous
deformation matrices

F Solutions for general homogeneous
deformation matrices

G Rotations in homogeneous deformation
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

F=[20;0 05

Examples of 2D homogeneous deformation 5
Note that the symmetry of the displacement F{ 20 }
fields (or lack thereof) in the examples ‘
corresponds to the symmetry (or lack thereof) in
the deformation gradient matrix [F]. .
What is a simple way to describe homogeneous
deformation that is geometrically meaningful?
What is the geologic relevance?
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Il Elementary linear algebra relations
A Inverse [A] ! of a real matrix A
1 [AJ[A]" = [A][A] = [1], 10
where [I] = identity matrix (e.g., [1]{ 0 1 } )
2 [A] and [A]'* must be square nxn matrices
3 Inverse [A]1 of a 2x2 matrix

O Ao A =

4 Inverse [A]!of a 3x3 matrix also requires
determinant |A| to be non-zero

9/15/15 GG303
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Il Elementary linear algebra relations
B Determinant |A| of a real matrix A

1 A number that provides scaling
information on a square matrix

2 Determinant of a 2x2 matrix

Akin to:
A= a b , A| —ad—-bc  «— Crossproduct (an area)
d Scalar triple product (a volume)

3 Determinant of a 3x3 matrix 1

], |A|=a
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
Il Elementary linear algebra relations

C Transpose For [A]:{ a Z },[A]T:[ Z 2 }
C

D Transpose of a matrix product

[f[A]:|: ‘ z }and [B]=[ ; i },rhen [A]T:{ b }’"d [B]T:{ ; i }

_| ae+bg af +bh r | aetbg ce+dg
[A][B]—{ ce+dg cf +dh }’[[A][B]] _{ af +bh  cf +dh }

ea+gb ec+gd T
[B]T [A]T :[ fathb fe+hd }:[[A][BH This is true for any real nxn matrices

9/15/15 GG303 6
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Il Elementary linear algebra relations

E Representation of a dot product using
matrix multiplication and the matrix
transpose

deb=(a,a.a)e(b.b.b)=ab +ab +ab,

X270y z

b

X

:[ a, a, az} b, =[a]T[b]

b

Z
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lIl Equations for an ellipse
A Equation of a unit circle
1x°+y"=XeX =1

Y x

y
11
2| x v }{ N }=[X]T[X]=1 / /\,\9

y

1
3x=cos0 W’t CW

y=sin6
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

lIl Equations for an ellipse

B Ellipse centered at (0,0),
aligned along x,y axes

1 Standard form
(-

2 General form
A’ +Dy*+F=0

3 Matrix form [« » }{ gx
A, D, and F are
constants here, [ Xy }{
not matrices

r=acos6 i+ bsind j

—_
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Il Equations for an ellipse

B Ellipse centered at (0,0),
aligned along x,y axes

4 Parametric form

x=acosO

y=bsinf

5 Vector form

F=acosi+bsindj

9/15/15 GG303
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r=acosf i+ bsind j
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

lll Equations for an ellipse

C Ellipse centered at (0,0),
arbitrary orientation

1 General form
AX*+(B+C)xy+Dy*+F=0
provided 4AD > (B+C)?

2 Matrix form

A B x|
[x y}[c D}[y}—[x y}[
[ }{ A/-F BJ-F H x } 1 A,B,C, D,anth
Xy = are constants here,
C/-F DI-F || ¥ not matrices
[X ]T [Matrix of constants][X ] =1

9/15/15 GG303 11
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Il Equations for an ellipse
D Position vector for an ellipse

e - Y r=acosf i +bsind j
F=acos0i+bsinbj
So the axes of an ellipse/ellipsoid
are perpendicular, and the

. tangents to an ellipse/ellipsoid at
| X the ends of the axes are

/ perpendicular. Those tangents
parallel the axes.

E Derivative of position vector
for an ellipse (dr/d6)

a =—asinBi +bcosbj

do
F Dot product of r and dr/d6 -
dF ) Y dr/d6 = -asing i + bcosh j
f-d—z(bz—az)sinecose ) <

dr/de
beos j
sind
a

// dr/dé\\\

G The position vector and its
tangent are perpendicular if

i dr/de

and onIy If ) ((angen:(oe\hpse)
1 a=b,or N P4
2 6=0° or < Along axes e 7

_ ° f | | K (position vector)
3 e =90 or éllipsé r+dr/de = -aZsinecose +b2sinBcose = (b2-a)sinécose

We will use these results shortly r-dr/do=0ifa=b, 0=0,0r0 =90°
9/15/15 GG303 12
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

IVEquation of homogeneous deformation

A [X'] = [F][X]

B 2D :

ax’ | ox
dy' - ] y

dx

C3D

ax’
dx

@ oy
}, T oox
dz

7’
dx
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E,
F

FX"‘V |: y jl

Fy |
For
homogeneous
strain, the
derivatives are
uniform
(constants) , and

dx, dy can be
small or large
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IV Equation of

homogeneous X[ [X]
deformation [X'] = [FI[X] _[x’]=[F][X]
D Critical matter: =7
Understanding the
geometry of the
deformation

E In homogeneous
deformation, a unit
circle transforms to

an ellipse (and a

sphere to an

ellipsoid)

9/15/15

F Proof
(x] [x]=1

IX]=1

Now solve for [X]

[FI X 1=[FT [FIIx]=[1][X]=[X]

[X)=[F]"[¥]

Now solve for [X]T

] =[le7 i) =L r (11 ]

Now substitute for [X]"and [X] in first equation

[xT (x]=[xT]

[xT

[T [F] [x7]=1
1

[Symmetric matrix] [X_'] =

Equation of ellipse
See slide 11

GG303
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

IV Equation of homogeneous [F]
deformation [X’] = [F][X]
Geometric meanings of [F], [F]*! /

G [F] transforms a unit circle to a

. I Unit circle “Strain ellipse”
“strain ellipse” P
H “Strain ellipse” geometrically F!
represents [F][X] _— -~
I [F] transforms a “strain
ellipse” back to a unit circle Unit circle “Strain ellipse”
J [F] 1 transforms a unit circle to :
a “reciprocal strain ellipse” [Fl
K  [F] transforms a “reciprocal
strain ellipse” back to a un|t
circle eqprocal strain ellipse” Unit circle
L “Reciprocal strain” ellipse
geometrically represents [
[FI[X] >
=) o fer-tl 4 7
¢ a ¢ ¢ a “Reciprocal strain ellipse” Unit circle
9/15/15 GG303 15
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V Eigenvectors and eigenvalues
A The eigenvalue matrix equation [A][X] = A[X]
[A] is a (known) square matrix (nxn)

=

2 [X]is a non-zero directional eigenvector (nx1)
3 Aisanumber, an eigenvalue

4 A[X] is a vector (nx1) parallel to [X]

5 [A][X] is a vector (nx1) parallel to [X]

9/15/15 GG303 16
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

A The eigenvalue matrix equation [A][X] = A[X]
(cont.)
6 The vectors [[A][X]], A[X], and [X] share the
same direction if [X] is an eigenvector
7 If [X] is a unit vector, A is the length of [A][X]
8 Eigenvectors [X] have corresponding
eigenvalues [A], and vice-versa

9 In Matlab, [vec,val] = eig(A), finds
eigenvectors (vec) and eigenvalues (val)

9/15/15 GG303 17
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V Eigenvectors and eigenvalues (cont.)
B Examples [A] X] =1 X

1 Identity matrix [1] [ 10 }{ x }{ x }:{ x }
01| v y y

All vectors in the x,y-plane maintain their
orientation when operated on by the identity
matrix, so all vectors are eigenvectors of [l],
and all vectors maintain their length, so all
eigenvalues of [I] equal 1. The eigenvectors
are not uniquely determined but could be
chosen to be perpendicular.

9/15/15 GG303 18
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

V Eigenvectors and eigenvalues (cont.)

B Examples (cont.)

2 A matrix for rotations in the x,y plane
[A] X] _ =2 _IX

cosw sinw X _2 X
—sin@w Ccos® y y
All non-zero real vectors rotate; a 2D

rotation matrix has no real eigenvectors
and hence no real eigenvalues

GG303
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V Eigenvectors and eigenvalues (cont.)

B Examples (cont.)
3 A 3D rotation matrix
a The only unit vector that is not rotated is
along the axis of rotation

b The real eigenvector of a 3D rotation
matrix gives the orientation of the axis of
rotation

c A rotation does not change the length of
vectors, so the real eigenvalue equals 1

GG303
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V Eigenvectors and eigenvalues (cont.)

B Examples (cont.) Eigenvalues
4 Az{ 0 2} | Eigenvectors
2 0

V2/2 | [ o 22
A{ 72 H 2 _2{ 2 ]

| V2/2 _{o 2} V202 | | -2 _5 V2/2
22 [ L2 0] -z || V2 | ] V22

9/15/15 GG303 21
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V Eigenvectors and eigenvalues (cont.)
B Examples (cont.)

c Eigenvalues
A= 9 3 Eigenvectors
31 l
-3J0.1 { 9 3 } =301 |_| 30401 :10_ 3001 |
o1 31§ —Joa -1040.1 o1 |
4 o1 :{93 Vo1 :{0}20_\/@_
-340.1 31 | 3401 0 | 3o |

9/15/15 GG303 22

9/15/15

11



9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

V Eigenvectors and eigenvalues (cont.) Intersecting lines have non-parallel normals

E Geometric meanings of the real
matrix equation [A][X] =[B] =0
1 |A|#£0;
a [A]lexists
b Describes two lines (or 3
planes) that intersect at
the origin
¢ X has a unique solution
2 |A|=0;
a [A]?l does not exist

b Describes two co-linear
lines that that pass
through the origin (or
three planes that intersect
in a line or a plane
through the origin)

¢ [X] has no unique solution

AX =B=0

(M d1=0
BRIl RS

Parallel lines have parallel normals

AX =B=0
n, (1) n (1) x| _ |dq=0
{nim n@| |y = | a0

A=, (D *n @ - n (D5 0,20

nyxny=0

n,

9/15/15 GG303 23
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V Eigenvectors and eigenvalues (cont.)

F Alternative form of an eigenvalue equation
1 [A]IX]=AIX]
Subtracting A[IX] = A[X] from both sides yields:
2 [A-IA][X]=0 (same form as [_A4][X]=0)

G Solution conditions and connections with determinants
1 Unique trivial solution of [X] = 0 if and only if |A-IA| 20
2 Eigenvector solutions ([X] # 0) if and only if |A-IA|=0
* See previous slide

9/15/15 GG303 24
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

V Eigenvectors and eigenvalues (cont.)
H Characteristic equation: |A-IA|=0

1 The roots of the characteristic equation are the
eigenvalues

9/15/15 GG303 25

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

V Eigenvectors and eigenvalues (cont.)
H Characteristic equation: |A-IA|=0 (cont.)
2 Eigenvalues of a general 2x2 matrix A=| ¢ Z }
C

a—1 b
=0
c d—l‘ /

b (a—2A)(d-—A)—bc=0

a |[A-1I2|=

(a+d) = tr(A)

(ad-bc) = |A]
c ;tz—(a+d)l+(ad—bc)=/£)§/ —
(a+d)(a+d) —4(ad—bc) P+h=mr(4)
d 4.4 = 5 h=|A

9/15/15 GG303 26
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

V Eigenvectors and eigenvalues (cont.)

| To solve for eigenvectors, substitute eigenvalues back
into AX= IX and solve for X

J See notes of lecture 19 for details of analytic
solution for eigenvectors of 2D matrices

9/15/15 GG303 27
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V Eigenvectors and eigenvalues (cont.)
K Matlab solution: [vec,val] = eig(M)
1 M = matrix to solve for
2 vec = matrix of unit eigenvectors (in columns)
3 val = matrix of eigenvalues (in columns)

L Example:>> [vec,vall=eig([2 2;2 2])
vec =
-0.7071 0.7071
0.7071 0.7071
val =
0 0
0 4

9/15/15 GG303 28
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

VI Solutions for symmetric matrices
A Eigenvalues of a symmetric 2x2 matrix _

2 A= a b :|
+d)t +d) —4(ad - b*? =l b 4
1 4.4, = (a ) \/(a 2) (a ) L
2 AA = (a+d)i\/(a+2ad+d)2—4ad+4b2 E;g';f?n"C”
- 2 egns. of
(a+d)i\/(d—2ad+d)2 +4b? slide 26
be negative; it is
4 A A —(a+d)i_ (a_d)2+4b2/thesumoftwo
127% —

2 squares.
Eigenvalues are
real.

9/15/15 GG303 29
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VI Solutions for symmetric matrices (cont.)

B Any distinct eigenvectors (X, X,) of a symmetric
nxn matrix are perpendicular (X, ® X, = 0)

la AX; =\ X, 1b  AX, =AX,
AX, parallels X, AX, parallels X, (property of
eigenvectors)

Dotting AX; by X, and AX, by X, can test whether
X, and X, are orthogonal.

2a X,oAX, = X,oA X, = A, (X,X,)
2b X *AX, = X, oA X, = A, (X, *X,)

9/15/15 GG303 30
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

B’ Distinct eigenvectors (X,, X,) of a symmetric 2x2 matrix are
perpendicular (X; ® X, = 0) (cont.)
The material below shows X, *AX, = X,*AX; for the 2D case:

3a - .
X, { a b i| X, X, ax, +by, ax,x, +bx,y,

[ ] = L] = — —

R bd ] » | | bx,+dy, | +byx,+dyy,

3b | X, { a b } X, 17 X, ax, +by, ] ax,x, +by,x,
[ ] = [ ] = IS SE—

Y2 bod |y || bx,+dy, | +bxy, +dyy,

The sums on the right sides are scalars, but the ordering of the
terms in the sums look like the elements of transposed
matrices

9/15/15 GG303 31
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B” Distinct eigenvectors (X, X,) of a symmetric 3x3 matrix are
perpendicular (X, ® X, = 0) (cont.)
The material below shows X, *AX, = X,*AX; for the 3D case:

3c
X, i a b ¢ i X, X, ax, +by, +cz, ax,x, +bx,y, +cx,z,
Y |*| b d e Y, |=| n o |e| bx,tdy,tez, |= +byx,+dyy, +Z'ZZ
g llee ]z 4 cx, +ey, + fz, +ez,x, +ez,y, +E
3d X, P X, ax, +by, +cz, ax,x, + by, x, + cz,x,
y, |[*| b d e no|=| ¥ || bxitdytez |= tbxy,+dyy, +ezy,
2, | ¢ ¢ f 1 2, cx, ey + 1z, +ex,z, +T,_z2+ faz,

Again, the sums on the right sides are scalars, but the ordering
of the terms in the sums look like the elements of transposed
matrices

9/15/15 GG303 32
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B’” Distinct eigenvectors (X,, X,) of a symmetric
nxn matrix are perpendicular (X, ® X, = 0) (cont.)

The 2D and 3D results suggest matrix transposes
could test whether X, *AX, = X,*AX, in general

oAX[]A
]

] Are these equal?

T

T
, e AX, [X = [[X ] [Xl]:| The transpose of a scalar

[x
] [ is the same scalar
[A][X,]] [[X] J This step and the next invoke [BC] = [C] T[B] T
"[a] |:[X2] } T
]T[ﬁ]r[[xz]J D[[Xz] ] :[Xz]
]

' [A][[Xz]] If [A] is symmetric, [A]T = [A] Yes!

1

=[x
=[x
:[X

9/15/15 GG303 33
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B Distinct eigenvectors (X;, X,) of a symmetric nxn matrix are
perpendicular (cont.)

Since the left sides of (2a) and (2b) are equal, the right sides must be
equal too. Hence,

4 N (XZ’Xl) =\, (X1°X2)

Now subtract the right side of (4) from the left

5 (A,—A))(X,0X,) =0

¢ The eigenvalues generally are different, soA;— A, # 0.
¢ This means for (5) to hold that X,*X; =0.

* |The eigenvectors (X;, X,) of a symmetric nxn matrix are
perpendicular (or can be chosen to be perpendicular)

¢ |We can pick reference frames with orthogonal axes to simplify
problems and gain insight into their solutions

9/15/15 GG303 34
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

VI Solutions for symmetric matrices (cont.)
C Maximum and minimum squared
lengths
Set derivative of squared lengths to
Z€ero.
X'eX’'=(AX)e(AX)=L,
d(X’eX") . aX X’
(XeX) o, dX aX
de de  do

2[X'-dXJ=0

X' =0

do

[X’oﬁjz 0
de

D Position vectors (X’) with maximum
and minimum (squared) lengths are
those that are perpendicular to
tangent vectors (dX’) along ellipse

9/15/15 GG303

Y X’'=acos0 i+

bsin® j

£y dX’/d0 =-asind i +bcos j

e dx/don

\ J/

-asin® i

Ay
dX'/dem,, j

dX’/de
(tangent to ellipse)

X
(position vector)

X+ dX’ /d6 = -asinBcose +b2sinecose = (b2-a?)sinecose

X+ dX’/de =0ifa=b, 6 =0° or 6 =90°

35
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VI Solutions for symmetric
matrices (cont.)

E AX=AX
F Since eigenvectors of

symmetric matrices are
mutually perpendicular,

so too are the para”el Unit vector parallel to

ellipse tangent dX'/d6;

transformed vectors AX itis anti-parallel to unit

eigenvector X4

G At the point identified by
the transformed vector
AX, the other
eigenvector(s) is (are)
perpendicular and hence
must parallel dX’ and be
tangent to the ellipse

9/15/15 GG303

Unit vector
parallel to
ellipse tangent
dXq'/d6;

it parallels unit
Xy'=MXq eigenvector Xy

36
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VI Solutions for symmetric matrices
(cont.)

H Recall that position vectors (X’)

with maximum and minimum
(squared) lengths are those
that are perpendicular to
tangent vectors (dX’) along
ellipse. Hence, the smallest
and largest transformed
vectors AX for a symmetric
matrix give the minimum and
maximum distances to an
ellipse from its center and the
directions of the ellipse axes.

I The A values are the principal
stretches associated with a
symmetric [F] matrix

J These conclusions extend to
three dimensions and
ellipsoids

9/15/15

Unit vector
parallel to
ellipse tangent
dXy'/de;

Unit vector parallel to
ellipse tangent dX'/d6;
itis anti-parallel to unit

eigenvector X4 b .
it parallels unit

Xy'=MXq eigenvector Xy

GG303 37
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VIlISolutions for general
homogeneous deformation
matrices

A Eigenvalues

1 Start with the
definition of
quadratic elongation
Q, which is a scalar

2  Express using dot
products

3 Clearthe
denominator. Dot

products and Q are
scalars.

9/15/15

L;_Q

L

X eoX

Yox 2
XeX'=(XeX)0Q

9/15/15
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VIl Solutions for general homogeneous
deformation matrices

A Eigenvalues X,.X,:(X.X)Q

4 Replace X’ with [FX] " r
—_— _
5 Re-arrange both sides [[ﬁ][ﬁ]} [[,5,][551]} [Xj [fl]l,Q“
6 Both sides of this equation T T T
off with [XI", which cann:tl;:ag\’["{ﬂ (Fl{Frx]=[x] o[x]
zero vector, so it can be dropped } L=
from both sides to yield an Y
eigenvector equation |:£; 5}[§}=Q[§}
7 [FTF] is symmetric: [FTF]"=[F"F]
8 The eigenvalues of [FTF] are the "[A][X] = /’L[X]"
principal quadratic elongations
Q= (Lf/l-o) 2
9 The eigenvalues of [FTF] /2 are the
principal stretches S = (L¢/L,)

9/15/15 GG303 39
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VIl Solutions for general homogeneous T
deformation matrices I:F F:I[X] = Q[X]
B Special Case: [F] is symmetric
1 [F'F]=[F?] because F=FT [FZJ[X]=Q[X]
2 The principal stretches (S) again are
the square roots of the principal 12 L
guadratic elongations (Q) (i.e., the Q=L—’2;S=L—f2\/§=5
square roots of the eigenvalues of 0 0
[F2]) _
3 The principal stretches (S) also are [Fllx]=s[x]

the eigenvalues of [F], directly

4  The directions of the principal
stretches (S) are the eigenvectors @ -
of [F], and of [FTF] = [F2]!

5 The axes of the principal (greatest
and least) strain do not rotate

9/15/15 GG303 40

AN
/"Quadratic

it ci m Jstrain ellipse”
Unit circle “S(ra\ lipse / P

" Principal axes
do not rotate
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VIl Rotations in homogeneous

deformation FEVR N v
A Just getting the size and ys——— \Q g @
shape of the el
“strain” (stretch) ellipse is bt e
not enough. Need to o

consider points on the
ellipse

B F=VR (which “R”?)
1 R =rotation matrix

’ F=RU R
2V =stretch matrix v .;:“nmm; Q
C F=RU (which “U”? “R”?)

Ry=0
1 U= stretch matrix U2 © >
2 R =rotation matrix AN
D The choices narrow if the t’e‘ ﬁ@
stretch matrices are nd o X
symmetric -
9/15/15 GG303 41
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VIII  Rotations in homogeneous Uniterce “Strain® stretch) ellipse

deformation
E If an ellipse is transformed to
a unit circle, the axes of the |
ellipse are transformed too. \
F Inthe diagram, the axes of the
ellipses do not maintain their
orientation when the ellipse is

transformed back to a unit
circle

G If Fis not symmetric, the axes
of the red ellipse and the
retro-deformed (black) axes
will have a different absolute
orientation

H The transformation from the
the retro-deformed (black) [Fl,
axes to the the orientation of st
the principal axes gives the i
rotation of the axes : Deformed oo pincea

strain axes

Retro-deformed Principal
principal strain axes strain axes

Unit c\rcle

9/15/15 GG303 42
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VIl Rotations in homogeneous Unitirce “Suain stgetch) elpse
deformation T N

I We know how to find the
principal stretch magnitudes:
they are the square roots of
the eigenvalues of the
symmetric matrix [ [FT][F] ]

] The eigenvectors of [ [FT][F] ]
give the some of the
information needed to find oo
the direction of the principal i, Unit circle
stretch axes. The rotation - T
describes the orientation H
difference between the
principal strain (stretch) axes
and their retro-deformed
counterparts

Principal

Retro-deformed principal strain
have the sam

Small arrows
Show rotation

Deformed reciprocal principal
strain axes

9/15/15 GG303 43
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VIl Rotations in homogeneous
deformation

K To find the rotation of the 1Y Xr=acoso i+ biino
principal axes, start with
the parametric equation for
an ellipse and its tangent,
and the requirement that
the position vectors for the
semi-axes of the ellipse are
perpendicular to the Y e =-asind T4 beost)

tangent asino ]
/ dx’/de\

S
. dx'/de(mg j

X’ =(acos+bsin®)i +(ccosd+dsinh)j
dx’

=(~asin@+bcosB)i +(—csin@+dcos0)j , 7ds
d9 (tangent to ellipse)
- \. /
- ’ Recall the 6 gives the orientation of N e
’ —
4 20 = a unit vector that is used to define (pmmxn'vem”
a unit circle: x = cos6; y =sinf X’+ dX’ /de = —aZsinBcos6 +b2sinBcose = (b2-a2)sinecoso
X+ dX’/de =0ifa=b, 6 =0° or 6 =90°
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VIIl Rotations in
homogeneous
deformation

Now solve for 6

X' =(acos@+bsinB)i +(ccosf+dsin@)j

X’=acos0 i+ bsind j

%:(—asin0+bcose)17+(—csin9+dcos@)f N
e dx’ 0 Y dX’/de:nxwml:l:y(‘?’sn/
do - / ’ , w@ N dxrde : beost j
=—a’sinfcosh +abcos’ @ — absin® 6 + b sinf cos O \asino
—¢?sin@cos@ + cd cos® O — cdsin’ @ +d” sin@ cos O o
dX’/de
=—(a’-b*+¢* —d’)sinOcos0 +(ab+cd)cos’ 0 — (ab+cd)sin’ 0 ‘ (angep oellpse
N
=—(a’ -b*+ ¢ —d’)sinOcos® +(ab+cd)(cos’ 6 —sin 0)
(position vector)
A ) g abcdeon2s A G
LR S S
- (“f“)sin(-zey (ab+cd)cos(~26) =0
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VIII Rotations in L Sy
/ N\
homogeneous
deformation ‘ % =)y
Continuing.... S/
:‘/ dX’/d@ = -asin® i + bcosh j
2 2 2 2 — -asin |
a —b +c —d ol
%sin(—Ze) +(ab+cd)cos(-20)=0 / RO Tmml
2(ab+cd ( P 1\
tan(-26) = % \ SRR
a—-b"—c —d (Bng::t{;éde(\,hpse)
2(ab+cd 2(ab+cd
6,= ltan“ —_—— (a2 62 ) > 1.6, = ltan" 557 (az cz ) > |£90° AN S
2 a =b"—c =d 2 a=b"—c'—d [posmoxnlveuor]
So 8, and 6, are 90° apart — ) phi ot yiie: e
So the unit vectors that are transformed to give
RecaIIAthat two arlgles 'A\ the perpendicular principal axes of the strain ellipse
that differ by 180° have ) are themselves perpendicular.
the same tangent The angle between the those perpendicular unit
vectors and the corresponding vectors along the axes
of the principal strains is the angle of rotation.
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VIl Rotations in homogeneous deformation
The longest and shortest values of X’ are the
perpendicular vectors along the axes of the ellipse,
which have the following orientations:

[x/]-FI[x(6,)]
EMEG R
The corresponding back-transformed vectors are:
[F ] % =[F JiFILx(e) )= [x(0)]
[ % =L T x e))=[x(6.)]

The back-transformed vectors (along the black axes)
are just unit vectors in the directions of 8, and 6,,
respectively. This means the back-transformed
vectors maintain the 90° angle between the
principal directions. The angle of rotation is defined
as the angle between the perpendicular pair {X(6,)
and X(6,)} along the black axes of the unit circle and
the perpendicular principal pair {X’(6,) and X’(6,)}
along the red axes of the ellipse. These results carry
over to three dimensions if all three sections along
the principal axes of the “strain” (stretch) ellipse are
considered.

9/15/15

Unit circle

“Strain” (stretch) ellipse

Retro-deformed
principal strain axes

n axes and

Principal
strain axes

have the same orientation

Retro-deformed principal

GG303

Deformed reciprocal principal
strain axes
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Example 1 = [ 22
; st [X=[FIX: [F)-=[RI[0]
[F] = [R][U] [F]:{ 02.5 ? ]; [F]T:{ ; OiS ]
ofere 4 4 |
[R]:[F][U]il:{ 02,5 ? }{ 7117394
Tein] g e ]
First, ' 1
symmetrically " -
stretch the unit o5
circle using [U] - [X] -
2] \ -2
2 wix] | - [U][x]

9/15/15

GG303

Eigenvalues of [U]
give principal
stretch magnitudes

)

089 045
-045 089

1.56
134 1.79

H

Eigenvectors of

[U] are along axes of
blue ellipses. Rotated
eigenvectors of

[U] give principal stretch
directions

Second, rotate
the ellipse (not
the reference
frame) using [R]

1.34

-1.34
1.56

)
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

Example 2

Fl=IVIR

[F]{ 02.5

(X 1=[FIIx]: [F]=[V][R]

Eigenvalues of [V]
also give principal
stretch magnitudes

Jerzv]

DCEHE

e te1=] S5 e | s T o ]

First, rotate the ™
1
unit circle using

(R]

{43 %] TR s
TN
[R][x] [x] ey R | ther

1 Unrotated
:| 1 eigenvectors of
[V] give principal
stretch directions
| directly

Second, stretch
| the rotated unit

9/15/15

GG303

symmetrically
using [V]
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VIlIRotations in homogeneous deformation

* Decomposition of F = VR by method of
Ramsay and Huber (for 2D). Consider the
effect of an irrotational (symmetric) strain [V]
that follows a pure rotation [R] of an object
(not a rigid rotation of the reference frame)

9/15/15

B
D

cosm
sinw

GG303

—Ssmao —VR
cos@

9/15/15
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

VIII Rotations in
homogeneous
deformation

e Key fact about
rotation matrices:
[RI*=[R]"

R(w):{ C?S@ —sinw }

sSmao cosw

R‘:R(—w):{ cos® sinw ]

—sSmaw Ccosw

RT—{ cos® sinw }

—sin@ Ccosw
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VIl Rotations in

homogeneous

deformation [X']=[R][X]
e Key fact about rotation f( ff: X'oX’

matrices: [R]"* = [R]" X=[x] [x]=[x] [ ][ ]
e 3D treatment: rotating X e X =[[R][X] T[

a reference frame does — [XT'[R] [R][X ]

not change the length r

of a vector, so [R]I[R]z[ J, but

XeX=X"eX'. This also [R]"[R]=[1]

leads to [R]1= [R]™: ~[R] =[R]"
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
VIl Rotations in homogeneous deformation

1 F= a b _ A B C9sw —sinw —VR
c d B D sinw cosw
21| a b _ Acos®+ Bsinw —Asin®+ Bcos®
c d Bcosw+ Dsinw —Bsinw + Dcos®
By inspection, c-b = (A+D)sinw, and a+d = (A+D)cosw

3 =tan® If c=b, then F is symmetric and w=0!

a+

From 3 one can obtain w and hence R. [R]{ cos®  —sin® }

sin@  cosw

9/15/15 GG303

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
VIl Rotations in homogeneous deformation

Post-multiplying both sides of (1) by [R]1=RT
yields V, the symmetric “part” of F.

F=VR=>» F[R]'=VR[R]'=VR[R]"=

a b cos®w —sinw | a b cosw sinw |_| A B |_ v
c d sin® cosm c d —sin@ cosw B D

9/15/15 GG303 54
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IX Closing comments

1 Our solutions so far depend on knowing the displacement field.

2 With satellite imaging we can get an approximate value for the displacement field at the
surface of the Earth for current deformations

3 Evaluating strains for past deformations require certain assumptions about initial sizes and
shapes of bodies, the original locations of point, and/or the displacement field.

4 Alternative approach: formulation and solution of boundary value problems to solve for the
displacement and strain fields.

5 The deformation gradient matrix F has strain and rotation intertwined; the two can be
separated using matrix multiplication. In the infinitesimal strain matrix [€], the rotation is
already separated.

6 References
a  Ramsay, J.G., and Huber, M.I., 1983, The techniques of modern structural geology, volume

1: strain analysis: Academic Press, London, 307 p. (See equations of section 5, p. 291).
b Ramsay, J.G., and Lisle, M.l., 1983, The techniques of modern structural geology, volume 3:
applications of continuum mechanics in structural geology: Academic Press, London, 307
p. (See especially sessions 33 and 36).
¢  Malvern, L.E., 1969, Introduction to the mechanics of a continuous medium: Prentice-Hall,
Englewood Cliffs, New Jersey, 713 p. (See equations 4.6.1, 4.6.3 a, 4.6.3b on p. 172-174).)
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9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN
* FFTand FTF yield the same

guadratic elongations [Q]; they G _
have the same eigenvalues ‘ P
o " < 7
X'oX' _ Start with definition of Q - i v
XeX B 05 / N ;»'
* XX =0XeX Denominator cleared W
[X [F ][X] Formula for recip. strain ellipse : F{ 025 ? }
xT[x]=0 [ ][ ][X’H In * replace [X] by [F1X] R
(X7 [x1=0[[x] [F "L JxT] with (P2 expanded i
*[x]= Q[[ ] ] ] After [X']"is dropped from front
[x]= Q[I:F ] ] X']:I After replacing [F1] by [FT] T
[ [FT]Q[[FT e Ten]=eltr Tx) e o
[F][FT][X |:|:F ][X'] Q ] X' is an eigenvector of [FFT] . [V] [[F][F] J ={ 0:89 067 } |

Qs an eigenvalue of [FFT]

Eigenvalue equation
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* FFTand [F1]"[F] have
the same eigenvectors
* [X/]ZQ[I:F :| }[[F ] ]Start with * of previous page

Unitcirce “Strain” (stretch) ellipse

é[x']: [[F"] ]IIF"][X’]] Divide both sides by Q

[[F :| }[[F ][X ] X ] After switching left and right sides

X’ is an eigenvector of [[F] T[F]]

Eigenvalue equatlon 1/Qis an eigenvalue of [[F1]T[F1]]

Retro-deformed
principal strain axes strain axes

So X’ is an eigenvector of both [FFT] and [F1]T[F1] i uni e
have the same eigenvectors [X'], although their
eigenvalues are reciprocals. Now, eigenvector [X]
([FIT[F] [X] = Q[X]) is associated with the quadratic
elongations (see red axes), and the last equation
above has the same form, with [F1] replacing [F] G
and 1/Q replacing Q. This means eigenvector [X’] \ i
is associated with the reciprocal quadratic Defomed e princine
elongations (see orange axes). suanaxes
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