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Eigenvectors and eigenvalues of real symmetric matrices 
Eigenvectors can reveal planes of symmetry and together with their associated eigenvalues 
provide ways to visualize and describe many phenomena simply and understandably.  The 
solutions involve finding special reference frames.  

Applications of eigenvectors and eigenvalues in structural geology 
* Strain 
* Stress 
* Curvature (Shapes of surfaces) 

Equations for eigenvalue problems 
(1) [A][X] = λ[X] 
Since λ[X] = λ[IX], subtracting λ[IX] from both sides of (1) yields an alternate form: 
(2) [A-Iλ][X] = 0 

Meaning 
If a certain transformation or process, given by [A], acts on a particular non-zero vector X, such 
that [A][X] = λ[X], where λ is a constant, then λ is called an eigenvalue and the corresponding 
vector X is called an eigenvector.  The transformed vector λ[X] has the same direction as X, 
although its length might differ.  

Trivial solution for [A][X] = λ[X] 
X = 0 always solves equation (1) or (2). The solution is unique if and only if |A-Iλ|≠0.  
 
Example 1 
If two lines intersect at a unique point (the origin), then their slopes must differ, so the 
determinant |A| must not equal zero.  The following example with the lines y = 2x and y = -x 
illustrates this.  
The equations of the lines are: 

(a) 

� 

2x − y = 0
  x + y = 0

 

In matrix form these become:  

(b) 

� 

2 −1
1 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = λ

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = 0

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  

Since λ = 0, |A-Iλ| = |A| = 3: 
(c)

 2 −1
1 −1

= (2)(1) − (−1)(1) = 3 ≠ 0  
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The first equation in (a) stems from y = 2x.  Replacing y by 2x in the second equation in (a) 
yields 3x = 0, so x = 0.  Since y = 2x, y = 0.  Thus x = 0, y = 0 is the solution, as the graph above 
confirms, and this solution is unique.  Note the determinant of A, in (c), is indeed not zero. 

Eigenvector solution for [A][X] = λ[X] 
Eigenvectors, in contrast to trivial solutions, are required to be non-zero solutions to (1) or (2). If 
an eigenvector solution exists in addition to X = 0, then the solution is not unique, hence  |A-
Iλ|=0; this requirement also means that the rows in |A-Iλ| are not linearly independent.  
 
Example 2 
Consider the lines 2y = -2x and y = -x.  These lines plot on top of each other. 

(d)

� 

2x + 2y = 0
  x + y = 0

 

In matrix form these become:  

(e) 

� 

2 2
1 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = λ

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = 0

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  

Here again λ = 0, so |A-Iλ| equals |A|: 

(f) 

� 

2 2
1 1

= (2)(1) − (2)(1) = 0 

The determinant |A-Iλ|  = 0, and the slopes of 
the lines are equal. Any points along the 
direction y/x = -1 provide a solution.  So here λ 
= 0 is the eigenvalue and the corresponding 
eigenvector is given by the direction y/x = -1. 

 

Characteristic equation: |A-Iλ |=0 
The polynomial equation derived from |A-Iλ|=0 yields eigenvalues as its roots and is called the 
characteristic equation. 
 
Example 3 (General 2-D Example) 

Let 

� 

A =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .  Then 

(3) 

� 

A − Iλ[ ] =
a − λ b
c d − λ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

(4) 

� 

a − λ b
c d − λ

= 0 = a − λ( ) d − λ( ) − b( ) c( ) = λ2 − (a + d)λ + ad − bc = λ2 − tr(A)λ + A , 

where tr(A) is the trace of A (i.e., the sum of the terms along the main diagonal of A). 
 
By solving the quadratic equation we obtain the eigenvalues 

(5) 

� 

λ1,λ2 =
tr(A) ± tr(A)( )2 − 4 A

2
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In general, an n x n matrix has n eigenvalues, but some of the eigenvalues might be identical. 
Note that eigenvalues can be zero even though eigenvectors can not be (see example 2). 
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Eigenvalues and eigenvectors for a real symmetric 2 x 2 
matrix 

Eigenvalues (scalars) 

If A is a real symmetric 2x2 matrix such that b = c, then

� 

A =
a b
b d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , and from eq. (5) 

(6)  

� 

λ1,λ2 =
a + d( ) ± a + d( )2 − 4 ad − b2( )

2
=
a + d( ) ± a2 − 2ad + d2( ) + 4b2

2
 

(7)  

� 

λ1,λ2 =
a + d( ) ± a − d( )2 + 4b2

2
 

The squared terms under the radical sign can not be negative, so λ1 and λ2 must be real numbers. 

Eigenvectors (directions) 
Start with equation (2) 
(8a) 

� 

a − λ( )x + by = 0 or  (8b) 

� 

bx + d − λ( )y = 0  (Note: 9a and 9b are not linearly  
independent) 
(9a) 

� 

by = λ − a( )x   or  (9b) 

� 

λ − d( )y = bx  

(10a) 

� 

y
x

=
λ − a( )
b

  or  (10b) 

� 

y
x

= b
λ − d( )

 

Equation (10) gives the slope of the line for a particular eigenvalue.  Now consider the numerator 
and denominator of the slope as the y- and x-components of the eigenvector, respectively.  The 
square root of the sum of the squares of the component lengths gives the length of this 
eigenvector.  To find the direction cosines of the line with respect to the x- and y-axes (i.e., to 
find the components of a unit eigenvector), divide the x- and y- components by that length. 

(11a) 

� 

nx = b

b2 − λ − a( )2
=

λ − d( )
b2 − λ − d( )2

  (11b) 

� 

ny =
λ − a( )

b2 − λ − a( )2
= b

b2 − λ − d( )2
 

The eigenvectors X1 and X2 of a symmetric 2x2 matrix are orthogonal 
Proof: The product of the slopes of eigenvectors X1 and X2 is -1 

Start with equations (10a) and (10b).  For λ1 

� 

y
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1

=
λ − a1( )
b

, and for λ2: 

� 

y
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

= b
λ2 − d( )

. 

Now multiply the slopes and use equation (7) for the values of the eigenvalues: 
 

� 

y
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1

y
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

=
λ1 − a( )
b

b
λ2 − d( )

=
λ1 − a( )
λ2 − d( )

=
λ1 −

2a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

λ2 −
2d
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=

d − a( ) − a − d( )2 + 4b2

2
a − d( ) + a − d( )2 + 4b2

2

= −1 
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Diagonalization of a real symmetric 2x2 matrix 
A symmetric matrix [A] can be expressed in terms of matrices containing its eigenvalues and its 
eigenvector components by manipulating the equation AX = λX a bit.  This permits matrix [A] 
to be re-expressed in a form that has more geometric or physical meaning.  Start with the general 
eigenvalue equation: 
 

(12) 

� 

A[ ] X[ ] = λ X[ ] =
a11 a12
a21 a22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x1
x2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

a11x1 + a12x2
a21x1 + a22x2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

λx1
λx2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Here [X] contains just the components for one eigenvector and λ is just one eigenvalue.  If [A] 
is a 2x2 matrix, then [X] is a 2x1 matrix, and λ is a constant.  One can easily build on this 
equation by stacking all the eigenvectors (represented as column vectors below partitioned by 
dots) side-by-side in a 2x2 matrix, and by putting all the eigenvalues in a 2x2 matrix: 
 

(13) 
  

� 

A[ ] x1
(1)

x2
(1)
x1
(2)

x2
(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

λ1x1
(1)

λ1x2
(1)

λ2x1
(2)

λ2x2
(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

x1
(1)

x2
(1)
x1
(2)

x2
(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
λ1 0
0 λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
In abbreviated form, equation (13) becomes 
 

(14) 
  

� 

A[ ] X1X2[ ] = λ1X1λ2X2[ ] = X1X2[ ]
λ1 0
0 λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Now let [S] be the matrix of eigenvectors and [Λ] be the diagonal matrix of eigenvalues: 
 
(15)   

� 

S[ ] = X1X2[ ] 

(16) 

� 

Λ[ ] =
λ1 0
0 λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Substituting (5) and (6) into (4) 
 
(17) [A][S] = [S][Λ] 
 
By pre-multiplying both sides of (17) by [S]-1 the eigenvalue matrix [Λ] can be obtained from 
the original matrix [A] and the eigenvector matrix [S]: 
 
(18) [S]-1[A][S] = [S]-1 [S][Λ] = [Λ] 
 
Alternatively, by post-multiplying both sides of (17) by [S]-1 the original matrix [A] can be 
obtained from its eigenvalue matrix and its eigenvector matrix: 
 
(19) [A][S] [S]-1 = [A] = [S][Λ] [S]-1 
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Application to the equation of an ellipse (Principal 
Axes Thereom) 
Consider the equation of an ellipse 
(20) 

� 

ax 2 + 2bxy + cy 2 =1 
  
The equation can be re-written using matrices as: 

(21) 

� 

ax 2 + 2bxy + dy 2 = x y[ ]
ax + by
bx + dy
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = x y[ ]

a b
b d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = x y[ ] A[ ]

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =1 

 
Using equation (18) the matrix can be rewritten 

(22) 

� 

ax 2 + 2bxy + dy 2 = x y[ ] nx
(1) nx

(2)

ny
(1) ny

(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
λ1 0
0 λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
nx
(1) ny

(1)

nx
(2) ny

(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =1, 

where the n-terms are the components of the unit eigenvectors of symmetric matrix [A]. 
 
Since the unit eigenvectors of a real symmetric matrix are orthogonal, we can let the direction of 
λ1 parallel one Cartesian axis (the x’-axis) and the direction of λ2 parallel a second Cartesian axis 
(the y’-axis).  In light of this, we rewrite the rightmost matrix of the eigenvectors in the equation 
above: 
 

(23) 

� 

nx
(1) ny

(1)

nx
(2) ny

(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

a ′ x x a ′ x y

a ′ y y a ′ y x

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
This means that the matrix of unit eigenvectors for a symmetric 2x2 matrix can be interpreted as 
a  rotation matrix that relates coordinates in one orthogonal reference frame (here the x, y 
reference frame) to coordinates in an orthogonal reference frame along axes defined by the 
eigenvectors (here the x’, y’ reference frame).  This is a rather important result.  For the example 
here: 
 

(24) 

� 

nx
(1) ny

(1)

nx
(2) ny

(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

a ′ x x a ′ x y

a ′ y y a ′ y x

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

′ x 
′ y 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
This allows the equation of the ellipse to be expressed in the x’, y’ reference frame as 
 

(25) 

� 

ax 2 + 2bxy + dy 2 = ′ x ′ y [ ]
λ1 0
0 λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ x 
′ y 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ′ x λ1 ′ y λ2[ ]

′ x 
′ y 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = λ1 ′ x 2 + λ2 ′ y 2 =1 

or 

(26) 

� 

ax 2 + 2bxy + dy 2 =
′ x 
λ1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

+
′ y 
λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

=1 

 
The square roots of the eigenvalues for unit eigenvectors are the lengths of the semi-major and 
semi-minor axes of the ellipse.  This result is much harder to derive by other methods. 
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Examples of [A][X] = λ[X] 

Co-axial finite strain 
 

(27) 

� 

′ x 
′ y 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

a b = c
c = b d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  or  ′ X [ ] = F[ ] X[ ]  

The F-matrix for co-axial finite strain is symmetric.  In light of the material on the previous page, 
the unit eigenvectors give the directions in which the points given by X’ are the greatest and least 
distance from the origin.  The square roots of the eigenvalues give the magnitudes of those 
distances. 

Second partial derivatives in general 

(28) 

� 

∂ 2z
∂x 2

∂ 2z
∂x∂y

∂ 2z
∂y∂x

∂ 2z
∂y 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

dx
dy
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

∂ ∂z
∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂x

∂ ∂z
∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂y

∂ ∂z
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂x

∂ ∂z
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

dx
dy
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

d ∂z
∂x

d ∂z
∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

A matrix of mixed partial second derivatives (a Hessian matrix) is symmetric because the second 
derivative does not depend on the order of differentiation, so the off diagonal terms are equal.  
The eigenvectors give the directions in which the first partial derivatives increase or decrease the 
most.  The eigenvalues give the magnitudes of those changes in the first partial derivatives. The 
second partial derivatives along the main diagonal can differ from those off-diagonal if z locally 
has a quadratic form (e.g.,

� 

z = ax 2 + bxy + cy 2 ).  If z represents elevation, the principal values can 
be used to identify points that are at the top of domes or ridges, at the base of bowls or valleys, or 
at saddles.   

Infinitesimal strains in a plane 

(29) 

� 

∂ 2u
∂x 2

∂ 2u
∂x∂y

∂ 2u
∂y∂x

∂ 2u
∂y 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

dx
dy
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

∂ ∂u
∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂x

∂ ∂u
∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂y

∂ ∂u
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂x

∂ ∂u
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

dx
dy
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

d ∂u
∂x

d ∂u
∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

A matrix of mixed partial second derivatives of displacements is symmetric because the second 
derivative does not depend on the order of differentiation.  The eigenvectors give the directions 
in which the changes in elongation (or extension) increase or decrease the most.  The eigenvalues 
give the magnitudes of those changes in the elongations (or extensions). 
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Stresses 

(30) 

� 

σ xx σ xy

σ yx σ yy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
nx
ny

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

Tx
Ty

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = T

nx
ny

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

The stress matrix is symmetric in order for a body to be at equilibrium.  The eigenvectors give 
the directions in which the tractions on a plane through a point are greatest or least.  The 
eigenvalues give the magnitudes of the greatest and the least tractions.  These are also known as 
the principal stress magnitudes. 
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