
GG250 F-2004 L13-1

GG250 Lab 13
We shall play a game of tic-tac-toe

O

OOX

X

GG250 F-2004 L13-2

Strategy session

• Objective is to get three in a line first
 Any row, column, or diagonal will do

• If your next move cannot win the game, make
sure you block your opponent from winning
 What hurts the opponent may be good for you

• Looking ahead to the next move is a must;
looking ahead to future moves is much harder
and may require a recursive approach. You
can score 100% on this lab without recursion.

GG250 F-2004 L13-3

The Game Board

• Are some places on the board more
important than others?

323

242

323

GG250 F-2004 L13-4

Weighting slots differently

• Since some slots can appear in more winning
configurations than others, we may consider
giving them different weights:

424

282

424

GG250 F-2004 L13-5

Lab 13 assignment

• Write a function called name_move.m
which simulates how you will play a
game of tic-tac-toe.

• You can test your strategy against a
person (manually selecting the moves)
or against a well-intentioned but clueless
monkey.

GG250 F-2004 L13-6

Definition of name_move.m
function [row, col] = name_move (board, mover)
% NAME_MOVE The strategic moves of NAME
% [row, col] = name_move (board, mover)
% Input: board A 3x3 matrix representing the board game.
% A value of 0 means unused, whereas -1 and
% +1 are cells occupied by players 1 and 2
% mover The ID (-1 or +1) of this player.
% Output: row, col The position on the board that you have
% decided to move to. This means that
% board(col,row) must equal zero.

% If your ID = mover then the other guy's ID = -mover
% To check the status of the board you may use the function
% [game_over, winner] = tictactoe_game_status (board), where
% game_over is 0 or 1 and winner is -1 or 1 if the game is over.

GG250 F-2004 L13-7

The Random Game

• One of the pre-programmed players in
the tictactoe.m game is called 'monkey'.

• This player has no strategy at all!!!
 The only consideration is to find an unused

slot on the board for the next move.
 No analysis of the current situation is

undertaken
 There is no looking ahead to see what a

particular move might accomplish

GG250 F-2004 L13-8

Implementation of monkey_move.m

function [row, col] = monkey_move (board, mover)
% MONKEY_MOVE Simian Simulation
% The monkey randomly picks one of the available slots on the
% board. No analysis goes into this choice. The board is only
% consulted to find open slots. The mover ID is not used.

[rows, cols] = find (board == 0); % Find all the unoccupied slots
n = length (rows); % How many such slots are there
choice = floor (rand (1) * n) + 1; % Select one of them at random
col = cols(choice); % Get its column value
row = rows(choice); % Get its row value

GG250 F-2004 L13-9

Checking the board

• Since Matlab allows you to address rows
or columns using indices you can check
if making a certain move will produce a
win or not.

• You don't have to worry about changing
the board since the board you see is a
local copy of the game board. The
updating of the game board is done by
the tictactoe.m function.

GG250 F-2004 L13-10

Examining a single row
Q: For a certain row to give you a win as a result of your upcoming

move, what conditions have to be satisfied?

A: You must already occupy 2 of 3 spots, and the 3rd must be empty

Q: How can you check if, say, the 3rd row satisfies this condition?

A: Perhaps write a subfunction that returns the winning position or 0 if there is no win

function pos = checkrow3 (board, mover)

pos = find (board(3,:) == 0);

if length(pos) ~= 1 | sum (board(3,:)) ~= 2*mover

pos = 0;

end

GG250 F-2004 L13-11

Examining rows and columns

• Seems silly to have a separate function
for each row (checkrow1, checkrow2,
checkrow3) - why not just pass the row
number to the function?

• How about checking columns. Any
ideas?

• What to do with those two diagonals?

