
GG250 F-2004 L13-1

GG250 Lab 13
We shall play a game of tic-tac-toe

O

OOX

X

GG250 F-2004 L13-2

Strategy session

• Objective is to get three in a line first
 Any row, column, or diagonal will do

• If your next move cannot win the game, make
sure you block your opponent from winning
 What hurts the opponent may be good for you

• Looking ahead to the next move is a must;
looking ahead to future moves is much harder
and may require a recursive approach. You
can score 100% on this lab without recursion.

GG250 F-2004 L13-3

The Game Board

• Are some places on the board more
important than others?

323

242

323

GG250 F-2004 L13-4

Weighting slots differently

• Since some slots can appear in more winning
configurations than others, we may consider
giving them different weights:

424

282

424

GG250 F-2004 L13-5

Lab 13 assignment

• Write a function called name_move.m
which simulates how you will play a
game of tic-tac-toe.

• You can test your strategy against a
person (manually selecting the moves)
or against a well-intentioned but clueless
monkey.

GG250 F-2004 L13-6

Definition of name_move.m
function [row, col] = name_move (board, mover)
% NAME_MOVE The strategic moves of NAME
% [row, col] = name_move (board, mover)
% Input: board A 3x3 matrix representing the board game.
% A value of 0 means unused, whereas -1 and
% +1 are cells occupied by players 1 and 2
% mover The ID (-1 or +1) of this player.
% Output: row, col The position on the board that you have
% decided to move to. This means that
% board(col,row) must equal zero.

% If your ID = mover then the other guy's ID = -mover
% To check the status of the board you may use the function
% [game_over, winner] = tictactoe_game_status (board), where
% game_over is 0 or 1 and winner is -1 or 1 if the game is over.

GG250 F-2004 L13-7

The Random Game

• One of the pre-programmed players in
the tictactoe.m game is called 'monkey'.

• This player has no strategy at all!!!
 The only consideration is to find an unused

slot on the board for the next move.
 No analysis of the current situation is

undertaken
 There is no looking ahead to see what a

particular move might accomplish

GG250 F-2004 L13-8

Implementation of monkey_move.m

function [row, col] = monkey_move (board, mover)
% MONKEY_MOVE Simian Simulation
% The monkey randomly picks one of the available slots on the
% board. No analysis goes into this choice. The board is only
% consulted to find open slots. The mover ID is not used.

[rows, cols] = find (board == 0); % Find all the unoccupied slots
n = length (rows); % How many such slots are there
choice = floor (rand (1) * n) + 1; % Select one of them at random
col = cols(choice); % Get its column value
row = rows(choice); % Get its row value

GG250 F-2004 L13-9

Checking the board

• Since Matlab allows you to address rows
or columns using indices you can check
if making a certain move will produce a
win or not.

• You don't have to worry about changing
the board since the board you see is a
local copy of the game board. The
updating of the game board is done by
the tictactoe.m function.

GG250 F-2004 L13-10

Examining a single row
Q: For a certain row to give you a win as a result of your upcoming

move, what conditions have to be satisfied?

A: You must already occupy 2 of 3 spots, and the 3rd must be empty

Q: How can you check if, say, the 3rd row satisfies this condition?

A: Perhaps write a subfunction that returns the winning position or 0 if there is no win

function pos = checkrow3 (board, mover)

pos = find (board(3,:) == 0);

if length(pos) ~= 1 | sum (board(3,:)) ~= 2*mover

pos = 0;

end

GG250 F-2004 L13-11

Examining rows and columns

• Seems silly to have a separate function
for each row (checkrow1, checkrow2,
checkrow3) - why not just pass the row
number to the function?

• How about checking columns. Any
ideas?

• What to do with those two diagonals?

