
GG250 F-2004 L11-1

Lab 11

• Global variables
• Function handles

Background in Chapter 7.3

GG250 F-2004 L11-2

Global Variables

• Allows information to be shared among
several functions without passing the
information as an argument.

• Must be declared as a global variable in
all the functions that needs to access it.

• Should be used when the alternative
becomes too tedious.

GG250 F-2004 L11-3

The global keyword

To make a variable global, initialize it in the
workspace:

global myvariable
myvariable = …;

All functions that want to use this variable must
declare

global myvariable

GG250 F-2004 L11-4

Example of global variable

We want to define functions for converting
between nautical miles and km so we
easily translate data from on system to
another:

distance_km = nmiles2km (60);
distance_nm = km2nmiles (1000.0);

GG250 F-2004 L11-5

Example of a global variable
In order to make the right conversions we need to set up

a scaling factor that relates nautical miles and
kilometers. How long is a nautical mile????

Now we can make functions nmiles2km and
km2nmiles that use this global scaling factor.

global NM2KM
NM2KM = 1.852; % km in one nautical mile

GG250 F-2004 L11-6

Example of a global variable
function km = nmiles2km (nm)
% NMILES2KM Converting lengths in km to nautical miles
% km = nmiles2km (nm)
% Input: nm, distance in nautical miles
% Output: km, the same distance in kilometer

function nm = km2nmiles (km)
% KM2NMILES Converting lengths in nautical miles to km
% nm = km2nmiles (km)
% Input: km, distance in kilometer
% Output: nm, the same distance in nautical miles

GG250 F-2004 L11-7

Example of a global variable
function km = nmiles2km (nm)
% NMILES2KM Converting lengths in km to nautical miles
% km = nmiles2km (nm)
% Input: nm, distance in nautical miles
% Output: km, the same distance in kilometer
global NM2KM
km = nm .* NM2KM;

function nm = km2nmiles (km)
% KM2NMILES Converting lengths in nautical miles to km
% nm = km2nmiles (km)
% Input: km, distance in kilometer
% Output: nm, the same distance in nautical miles
global NM2KM
nm = km ./ NM2KM;

GG250 F-2004 L11-8

Function handles

• A function handle is a reference (or
pointer) to a defined function

• You create a handle by using the @
symbol before the function name

trig_handle = @cosd;
• To run the function referenced by the

handle, use feval
cos_30 = feval (trig_handle, 30);

GG250 F-2004 L11-9

Why use function handles?

• Function handles can be passed as arguments
to other functions
 Such functions are called function functions

• The extra layer of abstraction allows many
types of algorithms to be vastly simplified (see
today's lab).
 Initial if/switch testing to assign a handle to a

certain function call
 Repeated calls to that handle without further tests

speeds up execution and simplify the code

GG250 F-2004 L11-10

Function calls w/ or w/o handle

• Traditional call:
[out1, out2, …] = functionname (in1, in2, …);

• Call via handle:
 fhandle = @functionname;
 …
 [out1, out2, …] = feval (fhandle, in1, in2, …);

GG250 F-2004 L11-11

Matlab function functions

• fplot, for plotting a function
 fplot (handle, limits), e.g.

fplot (@cosd, [0 360]);
• quad, for integrating a function

 quad (handle, a, b), i.e.,
quad (@sqrt, 0, 1)

