Components of Scientific
Programming

Definition of problem
Physical/mathematical formulation (Focus today)

Development of computer code (Focus to date)
= Development of logic (e.g., flowchart)

= Assembly of correct lines of code

» Testing and troubleshooting

* Visualization of results

= Optimization of code

Analysis of results
Synthesis
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Steady-State

Heat Conduction Equation
Qin Qout

— —
dx

In this exercise, no major Matlab concepts
need to be implemented.
The focus is on a small change in the coding
and mathematics as a result
of the physics extending from 1-D to 2-D.
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Steady-State

Heat Conduction Equation (1-D)
Qin Qout

—n_5 Insulated wire or rod ——outy
dx

Change in thermal energy in time = Heat flow out - Heat-flow in

A_E — F* = Qom _ Qin _ _C(dTout _ dTm)
dx dx

At
T = temperature, and x = position
We will represent dT/dx as T'.

At steady state, the rate of energy change (E*) is zero:
E*=0=-c(T,,-T;,)

out ~ *i
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Steady-State Heat Conduction
Equation (1-D)
Qin Qout

— —
dx

At steady state,the rate of energy change (E*) is zero everywhere,
so E* does not change as a function of position (x):

E* o (Tu-Th)

dx dx
d*T 0
T"==——-=V°T=0 (1-D heat flow)
dx2

This is the Laplace equation,
one of the most important equations in physics
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Steady-State Heat Conduction
Equation

vir=%2-0 (1-D steadystate heat flow)

0T
o"x2

T

V2T .
oy

+ 0 (2-Dstate heat heat flow)

2 2 2
_? T+O') T+é) T=O (3—Dstate heat heat flow

2 2

oy~ oz
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What does T" = 0 mean?

* T' = constant
* A plotof T vs. x must be a line.

* T must vary linearly between any two
points along the rod at steady state.

* If T is known at positions x;_, and X;,,
then T(i) = [T(i-1) + T(i+1) ]/2
* T(i) = average of Tat the nearby

equidistant points (see Appendix for
more detail)
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1-D Steady State Heat Conduction (a)

T(x;)+T(x;_1)

T (x;)= >
num_iterations = 500;
x = 1:50;
T = 10."rand(size(x)); % initial temperature distribution
n = length(x);
for j = 1:num_iterations % a "for loop" is used here
for i=2:n-1; % Don't change T at the ends of the rod!
T(i) = (T(i+1) + T(i-1))./2;
end
figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x'); ylabel('T");
end
Boundary Pt. Interior Pt. Boundary Pt.
with fixed boundary J with fixed boundary
conditions [T] | << 1 <)<) 0 [T] conditions
X1 X2 X X49 X50
| =1 =2 | = i =49 i =50
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1-D Steady State Heat Conduction (b)

Boundary Pt. Interior Pt. Boundary Pt.
with fixed boundary with fixed boundary
conditions [T] | < O << 0 [T] conditions

T(x;)+T(x;_1)

T(x )=
’ 2
num_iterations = 500;
x = 1:50;
T =10."rand(size(x)); % initial temperature distribution
n = length(x);

for j = 1:num_iterations % a "for loop" is used here
T(2:n-1) = (T (3:n) + T(1:n-2))./2;
figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x"); ylabel('T");
end
% Shorter, and it runs, but it introduces “noise”

X1 X X X49 Xs50
i =1 i=2 i=i i = 49 i =50
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1-D Steady State Heat Conduction (c)

T(x;)+T(x;_1)

T (x;)=
x = 1:50; 2
T =10."rand(size(x)); % initial temperature distribution
n = length(x);
tol = 0.1;

dT = tol.*2.*ones(size(T)); % Initialize dT
while max(abs(dT)) > tol % a "while loop" is used here
fori=2:n-1;
dT(i) = ((T(i+1) + T(i-1))./2) -T(i); % Change in T
T(i) = T(i) + dT(i); % New T =old T + change in T

end
figure(1); clf; plot(x,T); axis([0 n 0 10]);figure(2) ; plot(x,dT);
end
% Hit ctrl-c to stop. Why won't this stop?
Boundary Pt. Interior Pt. Boundary Pt.
with fixed boundary with fixed boundary
conditions [1] | <)<) [ <)<) 0 [T] conditions
X1 X2 X X49 X50
| =1 =2 | = i =49 i =50
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1-D Steady State Heat Conduction (d)

T(x;)+T(x;_1)

T(xl') ~ >
x = 1:50;
T =10."rand(size(x)); % intial temperature distribution
n = length(x);
tol = 0.0001;
dT = tol.*2.*ones(size(T)); % Initialize dT
while max(abs(dT(2:n-1))) > tol % a "while loop" is used here
fori=2:n-1;

dT(i) = ((T(i+1) + T(i-1))./2) -T(i); % Change in T
T(@i) =T(i) +dT(i); % New T =old T + change in T

end
figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x"); ylabel("T");
end
Boundary Pt. Interior Pt. Boundary Pt.
with boundary J with boundary
conditions [T] | [ M [T] conditions
X, Xy X3 Xy Xg
i=1 i=2 i=3 i=4 i=5
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2-D Steady State Heat Conduction Equation

For a 2-D problem, the temperature at a point is
the average of T at the four nearest neighbors

Ti-1,)+T+L)H)+TG,j+D)+TG,j-1)

T(i,j)=
4 Boundary
Condition
(fixed)
y 1 1 1 1 1 1 x
5 E LJXJ |- |- |- |- |- D
Yalh— B3 B + @ @ @@ [Interor
’\ Point
~ ~
Ysh—Bm—+— &=+ B B B~
Note:
Yorb—B— B+ B B B B grid is
square
Yi—s—B—&m /= s 8 AX= Ay

X{ X, X3 X4 Xs Xg X7 Xg Xg
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2-D Steady State Heat Conduction Equation
T-1,)+T+Lp)+TG,j+H)+TG,j-1)

I@,j)=
4
*Add a loop to account for 2-D grid Boundary
*Reformulate T(x;) to account for 2-D Condition
*Check for convergence . (fixed)
Y5 @ \"' —
Yarp—B—B—— BB f3—@—— nterior
\ Point
L~
| | | | | | I"I/r
y3 [H L .n an .n L L &5 H1
Note:
Yopr—8—0—— 80881 gidis
square
Y1 —s——s—s—a—a——f Ax= Ay

X{ X, X3 X4 Xs Xg X7 Xg Xg
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Appendix

* This appendix shows in more detail how
the second derivative d°T/dx? is
evaluated numerically using a finite
difference approximation method.
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Solution of 1-D Steady State Heat
Conduction Equation

9) T,X+Ax —T’X—Ax
d°T 2 2
=22 =T"= lim =0

VT .
dx Ax—0 Ax

T(x+Ax)- T(x)) B (T(x) ~T(x- Ax))

V2T = lim ( Ax Ax
Ax—0 Ax

0

V2T — Lim [T (x+Ax)=T(x)]-[T(x)-T(x-Ax)]
Ax—0 (Ax)

=0

X-X  X+(AX)/2 X X+(AX)/2 xX+AX
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1-D Steady State Heat
Conduction Equation

V2T — Lim [T (x+Ax)=T(x)]-[T(x)-T(x-Ax)]

5 =0
Ax—0 ( Ax)

[T (x+Ax)-T(x)]-[T(x)-T(x-Ax)] =0

T(x+Ax)+T(x-Ax)-2T(x)=~0

2T (x) =T (x+Ax)+ T (x — Ax)]

| | | | |
X-2AX  X+AX X X+AX X+2AX
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1-D Steady State Heat
Conduction Equation

2T (x) =T (x+Ax)+ T (x — Ax)]

T(x)~ T(x+Ax)+T(x—-Ax)

2
7 T(x)+T(x;p) In words, what
(x;) = > does this mean?
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