
GG250 F-2004 Lab 7-1

Components of Scientific
Programming

• Definition of problem
• Physical/mathematical formulation (Focus today)
• Development of computer code (Focus to date)

 Development of logic (e.g., flowchart)
 Assembly of correct lines of code
 Testing and troubleshooting
 Visualization of results
 Optimization of code

• Analysis of results
• Synthesis
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Steady-State
Heat Conduction Equation

dx

Qin Qout

In this exercise, no major Matlab concepts
need to be implemented.

The focus is on a small change in the coding
and mathematics as a result 

of the physics extending from 1-D to 2-D.
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Steady-State
Heat Conduction Equation (1-D)

Change in thermal energy in time = Heat flow out - Heat-flow in

€ 

ΔE
Δt

= E*=Qout −Qin = −c dTout
dx

−
dTin
dx

 
 
 

 
 
 

€ 

E*= 0 = −c ′ T out − ′ T in( )

T = temperature, and x = position
We will represent dT/dx as T'.

At steady state, the rate of energy change (E*) is zero:

dx

Qin QoutInsulated wire or rod
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Steady-State Heat Conduction
Equation (1-D)

€ 

′ ′ T =
d2T
dx2 = ∇2T = 0    1−D  heat  flow( )

€ 

dE *
dx

= 0 = −c ′ T out − ′ T in( )
dx

= −c ′ ′ T 

At steady state,the rate of energy change (E*) is zero everywhere, 
so E* does not change as a function of position (x): 

dx

Qin Qout

This is the Laplace equation, 
one of the most important equations in physics
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Steady-State Heat Conduction
Equation

€ 

∇2T =
d2T
dx2 = 0    1−D  steadystate  heat  flow( )

€ 

∇2T =
∂2T
∂x2 +

∂2T
∂y2 = 0    2 −Dstate  heat  heat  flow( )

€ 

∇2T =
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0    3−Dstate  heat  heat  flow( )
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xi-2         xi-1         xi            xi+1         xi+2

What does T" = 0 mean?
• T' = constant
• A plot of T vs. x must be a line.
• T must vary linearly between any two

points along the rod at steady state.
• If T is known at positions xi-1 and xi+1,

then T(i) = [T(i-1) + T(i+1) ]/2
• T(i) = average of Tat the nearby

equidistant points (see Appendix for
more detail)
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1-D Steady State Heat Conduction (a)

€ 

T (xi ) ≈
T (xi+1)+T (xi−1)

2

x1          x2           xi          x49         x50

num_iterations = 500;
x = 1:50; 
T = 10.*rand(size(x)); % initial temperature distribution
n = length(x); 
for j = 1:num_iterations % a "for loop" is used here
   for i=2:n-1; % Don't change T at the ends of the rod!

T(i) = (T(i+1) + T(i-1))./2;
   end
figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x'); ylabel('T');
end

Boundary Pt.
with fixed boundary
conditions

Interior Pt.

i =1             i = 2                i = i             i = 49            i = 50

Boundary Pt.
with fixed boundary

conditions
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1-D Steady State Heat Conduction (b)

€ 

T (xi ) ≈
T (xi+1)+T (xi−1)

2
num_iterations = 500;
x = 1:50; 
T = 10.*rand(size(x)); % initial temperature distribution
n = length(x); 
for j = 1:num_iterations % a "for loop" is used here
   T(2:n-1) = (T (3:n) + T(1:n-2))./2;
   figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x'); ylabel('T');
end
% Shorter, and it runs, but it introduces “noise”

Interior Pt.

x1          x2           xi          x49         x50

Boundary Pt.
with fixed boundary
conditions

Interior Pt.

i =1             i = 2                i = i             i = 49            i = 50

Boundary Pt.
with fixed boundary

conditions
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1-D Steady State Heat Conduction (c)

€ 

T (xi ) ≈
T (xi+1)+T (xi−1)

2x = 1:50; 
T = 10.*rand(size(x)); % initial temperature distribution
n = length(x);
tol = 0.1;
dT = tol.*2.*ones(size(T)); % Initialize dT
while max(abs(dT)) > tol % a "while loop" is used here
   for i=2:n-1 ;

dT(i) = ((T(i+1) + T(i-1))./2) -T(i); % Change in T 
T(i) = T(i) + dT(i); % New T = old T + change in T 

   end
figure(1); clf; plot(x,T); axis([0 n 0 10]);figure(2) ; plot(x,dT); 
end
% Hit ctrl-c to stop.  Why won’t this stop?

x1          x2           xi          x49         x50

Boundary Pt.
with fixed boundary
conditions

Interior Pt.

i =1             i = 2                i = i             i = 49            i = 50

Boundary Pt.
with fixed boundary

conditions
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1-D Steady State Heat Conduction (d)

€ 

T (xi ) ≈
T (xi+1)+T (xi−1)

2

x1          x2           x3           x4          x5

x = 1:50; 
T = 10.*rand(size(x)); % intial temperature distribution
n = length(x);
tol = 0.0001;
dT = tol.*2.*ones(size(T)); % Initialize dT
while max(abs(dT(2:n-1))) > tol % a "while loop" is used here
   for i=2:n-1 ;

dT(i) = ((T(i+1) + T(i-1))./2) -T(i); % Change in T 
T(i) = T(i) + dT(i); % New T = old T + change in T 

   end
figure(1); clf; plot(x,T); axis([0 n 0 10]); xlabel('x'); ylabel('T');
end

Interior Pt.

i =1             i = 2                i = 3              i = 4              i = 5

Boundary Pt.
with boundary
conditions

Boundary Pt.
with boundary

conditions
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2-D Steady State Heat Conduction Equation

x1   x2    x3    x4   x5      x6   x7    x8    x9

y5

y4

y3

y2

y1

Boundary
Condition
(fixed)

Interior
Point

€ 

T (i, j) ≈ T (i −1, j)+T (i +1, j)+T (i, j +1)+T (i, j −1)
4

For a 2-D problem, the temperature at a point is
the average of T at the four nearest neighbors

Note:
grid is
square
Δx = Δy
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2-D Steady State Heat Conduction Equation

x1   x2    x3    x4   x5      x6   x7    x8    x9

y5

y4

y3

y2

y1

Boundary
Condition
(fixed)

Interior
Point

*Add a loop to account for 2-D grid
*Reformulate T(xi) to account for 2-D

*Check for convergence

€ 

T (i, j) ≈ T (i −1, j)+T (i +1, j)+T (i, j +1)+T (i, j −1)
4

Note:
grid is
square
Δx = Δy
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Appendix

• This appendix shows in more detail how
the second derivative d2T/dx2 is
evaluated numerically using a finite
difference approximation method.
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Solution of 1-D Steady State Heat
Conduction Equation

€ 

∇2T =
d2T
dx2

= T ' '= lim
Δx→0

′ T x +
Δx
2

 
 
 

 
 
 − ′ T x − Δx

2
 
 
 

 
 
 

Δx
= 0

€ 

∇2T = lim
Δx→0

T (x+Δx)−T (x)[ ]− T (x)−T (x −Δx)[ ]
Δx( )2

= 0
€ 

∇2T = lim
Δx→0

T (x+Δx)−T (x)
Δx

 
 
 

 
 
 −

T (x)−T (x −Δx)
Δx

 
 
 

 
 
 

Δx
= 0

x-x     x+(Δx)/2       x       x+(Δx)/2    x+Δx 
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1-D Steady State Heat
Conduction Equation

€ 

∇2T = lim
Δx→0

T (x+Δx)−T (x)[ ]− T (x)−T (x −Δx)[ ]
Δx( )2

= 0

€ 

T (x+Δx)−T (x)[ ]− T (x)−T (x −Δx)[ ] ≈ 0

€ 

T (x+Δx)+T (x −Δx)− 2T (x) ≈ 0

€ 

−2T (x) ≈ − T (x+Δx)+T (x −Δx)[ ]

x-2Δx     x+Δx        x         x+Δx    x+2Δx 
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1-D Steady State Heat
Conduction Equation

€ 

−2T (x) ≈ − T (x+Δx)+T (x −Δx)[ ]

€ 

T (x) ≈ T (x+Δx)+T (x −Δx)
2

€ 

T (xi ) ≈
T (xi+1)+T (xi−1)

2

xi-2         xi-1         xi            xi+1         xi+2

In words, what
does this mean?


