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Week 3 — Intro to Hydrothermal Activity and
Event Plumes (aka Megaplumes) from
Submarine Eruptions

Hydrothermal Processes overview
General comments
vent types: Focused flow, diffuse flow

chronic plumes over actively venting areas

Event Plumes
what are they?

association with eruptions

Note: hydrothermal effluent chemistry also changes in response to
eruptions but this is not part of today’s discussion

Effects of hydrothermal activity on the ocean

Source of heat

Source of new dissolved chemicals
Source of gasses

Source of particles

Source of microbes

Supports chemosynthetic communities
Helps to disperse organisms

Metal rich sediments

Other chemicals are lost from sea water in the
reaction zone of hydrothermal systems.
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Remember from
lecture 2

Latidude (°)

-60

Global distribution of submarine
hydrothermal vent sites (above)
and areas of survey coverage

(right), Baker and German, 2004. 2
Many of these sites are known §°
from water chemistry in %
hydrothermal plumes above the -

sea floor rather than observations 180
on the vents themselves

Neutrally Ambient current
Buoyant,
spreading,
diluting
plume

Rising, buoyant plume

Seawater entrainment

Cold seawater downflow Chimney

Deep heat source temporally stable for years to decades or more
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Redox changin cold
Oxidizing Environment
~~~ warm
Particles form from solubility shifts from - - - - — ——Reduci ng
new temperature and redox state HOT

Reducin g Environment Deep heat source temporally stable for years to decades
or more; but, punctuated during and just after eruptions

nascent chimney systems

black smoker a few months after eruption —
intense focused flow but no edifice (EPR 1991)

Immature black smoker chimney with little =5
colonization (years old?) — SEPR 1999 £
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established chimney systems

http://www.gns.cri.r h/mari

=&
Dive 4206, N-EPR 2006,
courtesy reset06 science party

Dive 3350, S-EPR 2006,
courtesy stowa science party

Riftia tubeworms at an established chimney system

GG 711, Fall 2011, Lect. 3 4



9/12/2011

8 .

Extinct chimney with new lava around it and a previously deployed
temperature probe (9 50N EPR, 2006).

diffuse flow

Colonization experiments at a diffuse flow vent site (N-EPR)
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Areas of acti drothermal venting
a few 10s to 100m

g...

above the

Excess heat

Excess gasses (He, Rn, CH4,
CO2)

Particles (Fe-sulfides, Fe-
oxides, microbes)

focused flow diffuse flow

0.1cas

Oxyamons, (HPO,~, HVQ,*, Cr0,“, HA2O," ), REE, Trace Metals
g 4 "4 "4 "4

4o, Mn?*. H,5,0, FeOOH: MnO,, AT. CHy, Fe?*. Fe, 8, #Rn. Hy, H,S

Basak

Procipfation
Chimney

Hydrothermal fluids mix rapidly with seawater. Entrainment of ambient seawater dilutes the
rising plume and causes temperatures and particle concentrations within the plume to
decrease within a short distance from a vent orifice. Hydrothermal plumes continue to rise
through seawater as long as plume fluids are less dense (more buoyant) than the
surrounding seawater. Once the density of the hydrothermal plume matches the density of
the ambient seawater, the hydrothermal plume stops rising and begins to disperse laterally.
This "neutrally buoyant plume" gets distributed by being "blown" by ocean currents at that
density level. Source: NOAA Vents website
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hydrothermal plumes are likely to be very important for the transport and
distribution of marine organisms, especially thermophile or hyperthermophile
bacteria that live under the seafloor and have been released into the ocean in
plumes resulting from recent volcanic events such as at CoAxial Segment, Axial
Volcano and the Gorda Ridge

Transient chemical effects in plumes

+Dilution of conservative constituents from dispersal (e.g., salinity, He)
(conservative means no chemical reactions during mixing)

«cooling from seawater entrainment

*Reactive particle formation (especially Fe-rich)

*Scavenging of particle reactive metals and oxyanions from sea water
*Microbial oxidation of reduced gasses (e.g., CH4, H2)

*Organic matter transformations

*Some tracers change at different rates and some roughly track each
other (like 3He/heat)

| can suggest references if you are interested in this topic.
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Plume Physics - The analogy to
processes in subaerial volcanic
eruption columns is useful to consider

(this slide borrowed and rearranged from I. Skilling, Penn State)

(Schmincke, 2000)

Some hydrothermal plume observations and model simulations
3-d rendering of the TAG hudrothermal mound (MAR)

http://www.pmel.noaa.gov/vents/modeling/

A& Usually
seval

tens of
ms to

i perhaps
- a couple

2 of

hundred
m above
the sea
bed

N lE\
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Some hydrothermal plume observations and model simulations

Vertical Geochemical Transport
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Event Plumes, aka Megaplumes

Larger, transient features formed in response to eruptions and perhaps
other catastrophic events at one place or another on the sea floor.

2 diagnostic features: lots of particles and larger temperature anomalies
than chronic plumes. Can rise to 1km above the sea floor.

Mid-ocean ridge plumes typically have maximum anomalies of 0.02-0.1°C,
although event plume anomalies of up to 0.3°C have been observed (e.g.,
Baker et al. 1987).

Seamounts can have anomalies in excess of 0.5°C
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http://www.pmel.noaa.gov/vents/PlumeStudies/
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Integrated 3He and heat (Q) output from a ridge
segment in the years after an eruption
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By calculating the hydrothermal heat inventory (Q) for a 1-meter wide transect along the
North Cleft segment from 1986 to 1997 we get another measure of the evolution of this
hydrothermal system with time after the volcanic eruption. We see that the largest heat
inventory was in 1986, followed by a sharp decline in 1987/88, a secondary peak in
1989/90, and continued relatively low levels through 1997.

Surveying for Chronic Plumes and
Megaplumes

Toyo survey

The CTD is towed behind the ship while
being cycled through the bottom 200 meters
or so of water where the hydrothermal
plumes are located.
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In 1986, a large plume of hot, particle laden water
approximately one million cubic meters in volume was
discovered over the North Cleft segment of the Juan de
Fuca Ridge.

This plume was unique in its shape (horizontally and
vertically symmetric), size (100 km?) and rise height
(~1km), indicating that an enormous volume of hot water
had been released in a relatively short period of time.
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Distance from summit (kilometers)
-3300 -2900 2500 -2100 1700 -1300  -900 _ 1 2 k] 4 5 €
SEA BEAM bathymetry (25 m contours)

1 8 9
A
Temperature an 1y
[J<o.5%c
[o.0s5-0.10%
[Jo.10-0.15%
B o.15-0.20%
B o . 20-0.25%,

(kilometers)

[ 54 IEEEE

Depth

Loihi
seamount

-1.
18°55. 710 18°52.5'11
155°14.7'RH 155°19.9'%

155" 16" -155° 14
Intense hydrothermal plumes from the 1996 Loihi seismic event had temperature
anomalies of 0.5°C during the rapid response cruise around the summit at depths of

1050-1250m, with anomalies of 0.1°C at distances >8 km.

One surprise was the observation of a very intense plume at 1600-1800 m depth at a
“background” station 50 km NNE of Loihi. A marked decrease in pH (0.2 units) and a
remarkable 3He enrichment (150%) were measured, suggesting an injection of
magmatic gasses to the water column during a large short-lived, but rapidly cooled,
volcanic episode well below the summit of Loihi during the early stages of the seismic
event. Source: HCV website
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NW Rota #1 (Marianas)

Towed hydrocast (tow-yo) at NW Rota #1 Submarine Volcano (14° 36' N) on February 12,
2003. A) Bathymetric map with tow line of hydrocast in white. B. Hydrothermal plume
above volcano as delineated by optical backscatter. The black saw tooth pattern is the
track of the CTD-rosette package as it passed over the volcano. The stair step features in
the track are the locations where samples were taken. ANTU= nepelometric turbidity
units above ambient seawater.

http://www.oceanexplorer.noaa.gov/explorations/06fire/background/plumes/plumes.html
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1996 Gorda event plume

http:/Aww.pmel.noaa.gov/vents/modeling/

Some hydrothermal plume model simulations

Usually
hundreds
of m
above
the sea
bed but
can be a
km

Distance (km)
200

Pacific

Megaplume-eruption
linkage
Dziak et al, 2007

Juan de Fuca and Gorda Ridge
map showing location and date
of significant earthquake
swarms (seafloor spreading
events) detected by the SOSUS
system.

All swarms had either a
response cruise that
investigated the site or pre-
swarm in-situ instrumentation.
Inset diagram shows cartoon of
event and chronic plumes
released from a mid-ocean
ridge.
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Start of earthquake migration (hours)

megaplumes are circles.

Earthquake swarms associated with seafloor eruptions, fluid-temperature changes, or
megaplume events are shown as stars; swarms with no clear magmatic activity or

Relationship of
earthquake migration
rate (m-s-1) to onset of
migration (hours after
beginning of swarm) .

Logarithmic decay curve
illustrates apparent non-
linear relationship,
dashed line shows 95%
confidence interval
derived from the model.
The subaerial 1979
Krafla (Iceland) dike
injection event (23)
added for comparison.

Dziak et al., 2007

Another interesting aspect of

Metal Partitioning During Hydrothermal Processes

megaplume formation:
injection of low solubility/high

soluble metals

alkalis,
volatility metals and alkaline earths
7 . (except Mg)
metalloids into sea water

non-soluble metals

main group metals (lll-V),
transition metals, REE

Metal Partitioning During Eruptions

volatile metals

main group metals (IlI-V),
transition metals

Add

. volatile metals
non-volatile metals

Ikalis, , ‘
glk:l:?\e earths, . \ N ‘4, zZ

REE N & non-volatile metals

%g soluble metals

Rubin, 1997, GCA
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Ridge Fluxes

element

Rubin, 1997
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