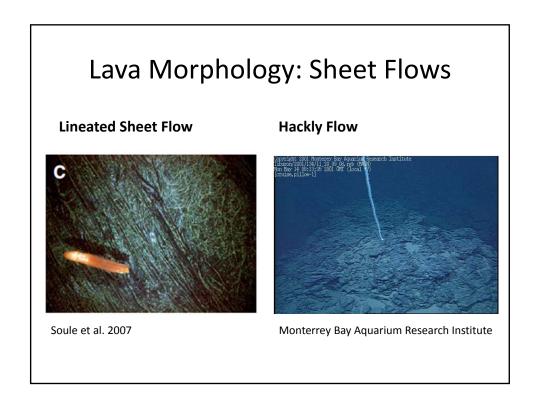
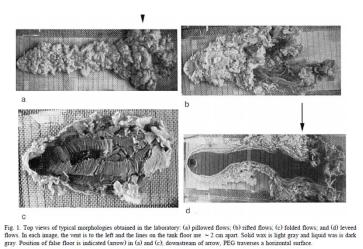

Submarine Lava Morphology


Introduction

- Lava morphology
- Wax modeling
- Factors that affect lava morphology
- Morphology in different submarine settings
- Methods for studying lava morphology
- Implications



NOAA

NOAA

Wax Models

Gregg and Fink 2000

Wax Models

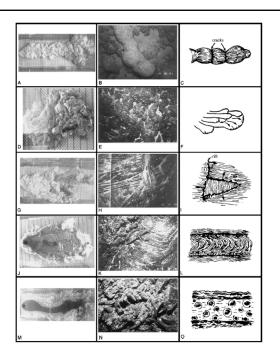
Correlating Ψ to morph types:

 Ψ = time required for solidification of flow surface time required heat advection within the flow

Laboratory morphology	Submarine morphology	Ψ 0° min	Cooling rate	Slope	Flow rate
pillows	pillows lobate sheets		†		
rifts	lineated sheets	3			
folds	ropy sheets	10			
levees	jumbled sheets	30			↓
				,	l '

Wax Simulations and Lava Flows

Morphologies


- •1st row: pillows
- •2nd row: lobate flows
- •3rd row: lineated sheet
- flows
- •4th row: folded flows
- •5th row: Jumbled sheet

flows

Primarily controlled by:

- •Effusion rate
- Slope

(Gregg and Fink 1995)

Wax Models and Folds

- Effusion Rate: Folds, viscosity and temperature
- Lava composition: Ratio of the 2nd generation fold wavelength to the firstgeneration fold wavelength

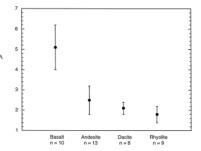


Fig. 2. The relation between the ratio (Λ) of second-generation fold wavelengths (L_2) and first-generation fold wavelengths (L_1) to terrestrial lava flows; n indicates the number of flows measured for each composition. Although Λ values for more evolved lavas overlap, basalts are distinct.

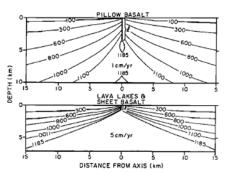
(Gregg et. al 1998)

Factors that Affect Lava Morphology

- Characteristics of the Magma
 - Viscosity
 - Composition
 - Crystal content
- Characteristics of the Volcano/Eruption
 - Conduit
 - Effusion rate
- Characteristics of the surrounding area
 - Slope
 - Surface roughness

Properties of the Magma

- As viscosity increases, morphology changes
- Viscosity factors:
 - More crystals → higher viscosity
 - More felsic → higher viscosity


Characteristics of the Volcano

Effects of the conduit

- Long and narrow: Pillow lavas
- Short, wide conduits: Sheet lavas

Effusion Rate

- Low effusion rate: pillows
- High effusion rate: lava lakes and sheet flows

Bonatti and Harrison (1988)

Surrounding Area

Slope

Generally

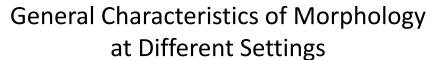
- With increasing slope:
 - Velocity, pillow mound thickness, flow length, and distance from vent to first folds increase
 - Flow width decreases
- Slopes > 40° have a greater effect on flow morphology than effusion rate or cooling

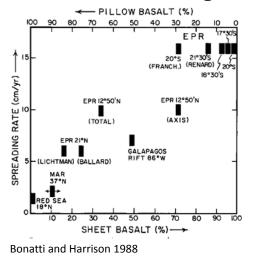
However:

- Slope has little effect if effusion is low and/or cooling is rapid
- Implications:
 - Gentle slopes to flat lands: lava morphology can be used to directly determine effusion rates
 - Steep slope (example where lavas flow over fault scarps): slope must be taken into account when estimating effusion rate

Surface Topography/Roughness

Rough surfaces made transitions occur at higher effusion rates


Factors that affect Morphology


	Pillow Basalts	Lobate Flows	Sheet Flows	
High	←	Viscosity	←	Low
High	←	Crystal Content	←──	Low
High	← ——	Composition (SiO ₂ content)	←——	Low
Low	 →	Temperature at Eruption	 →	High
Narrow	——→	Conduit Width	 →	Wide
Long	 →	Conduit Length	 →	Short
Low	 →	Effusion Rate	 →	High
Low	——→	Slope	 →	High
Rough	——→	Surface Roughness	 →	Smooth
Low	——→	Spreading Rate	 →	High

Adapted from Bonatti and Harrison (1988)

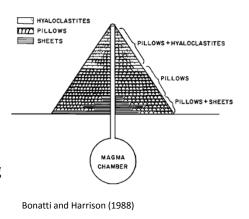
Other Features

- Collapse features: found with multiple lava flow morphologies
- Kipukas: can be used to estimate thickness of the flow

Fast Spreading Ridges

- In neovolcanic zone:
 - Lavas dominantly sheet flows
 - Few seamounts
- Outside of the neovolcanic zone:
 - Predominately lobate lava flows
 - Seafloor tubes and channels

Intermediate Spreading Ridges


- Sheet and pillow lavas common
- Eruptive deposits ~ 1 km wide (wider than fast ridges, narrower than slow ridges)

Slow Spreading Ridges

- Mostly pillow lava
- Tectonism dominates over volcanism

Seamounts

- Pillowed flows on relatively flat slopes changing to sheet flows as slopes increase
- Mainly pillows at the margins with sheet flows in the central caldera or plateau.
- More voluminous eruptions initially forming pillows and sheets with decreasing volcanism later

Research Methods

- Visual observations (dives and/or towed imaging surveys)
- Sidescan sonar
- Repeat bathymetry

Implications

- Many factors affect lava morphology
- Generally spreading rate, effusion rate and slope have the greatest effects on lava morphology
- Therefore, morphology is often used to determine effusion rate